Простая защита от кз. Технологии защиты в ATX-блоках питания



Этот блок питания прост для повторения, надежно защищен от случайных коротких замыканий, имеет плавную регулировку выходного напряжения от “нуля”, коллекторы транзисторов крепятся непосредственно к радиатору или корпусу (массе шасси).

Блок состоит из понижающего трансформатора, выпрямителя, сравнивающего устройства на операционном усилителе, который своим током потребления управляет составным транзистором и, узле защиты (рис. 1).

Понижающий трансформатор следует проверить на отдаваемую им мощность. Для этого первичную обмотку включают через предохранитель в сеть 220 вольт, предварительно заизолировав все открытые участки проводки. Переменное напряжение на вторичной обмотке не должно превышать 20 вольт, иначе после выпрямителя постоянное напряжение на электролитическом конденсаторе превысит 30 вольт, предельное для микросхемы операционного усилителя. Параллельно к выводам вторичной обмотки трансформатора подключают вольтметр и кратковременно накоротко замыкают мощным резистором сопротивлением 20 ом. Ток через резистор будет приблизительно 1 ампер. Обычно этого достаточно, но “дело вкуса”. Если показания вольтметра изменились незначительно и такая мощность устраивает, проверка закончена.

В выпрямителе лучше использовать микросборку КЦ-402 или КЦ-405 с любым буквенным индексом. Тогда постоянное напряжение на выходе будет более “красивым” благодаря одинаковым параметрам диодов моста. При потребности в больших токах блока выпрямительный мост собирается из отдельных мощных диодов.

Сравнивающее устройство (см. рис. 1) состоит из операционного усилителя DА1 и измерительного моста, образованного резисторами R5-R7 и стабилитроном VD2. Изменение напряжения на выходе блока питания приводит к разбалансу измерительного моста. Операционный усилитель усиливает напряжение разбаланса, изменяя напряжение на нагрузочном сопротивлении R4, но, так как эта нагрузка постоянна, то меняется ток, проходящий через микросхему. Этот ток, как нельзя лучше, подходит для управления регулирующим транзистором, так как транзистор, в общем, токовый элемент. Идея нестандартного включения операционного усилителя взята из . В сравнивающем устройстве можно применить любой операционный усилитель, особенно, если блок будет использоваться как нерегулируемый стабилизатор напряжения в каком-либо устройстве. Напряжение на выходе блока будет равно удвоенному напряжению стабилизации применяемого стабилитрона (это соотношение можно изменять резисторами R5 и R6). Если понадобится стабилизировать напряжение более 30 вольт, то необходимо установить стабилитрон VD3 (показан пунктиром), который погасит избыточное напряжение на ОУ. При этом сопротивление резистора R7 должно быть рассчитано на номинальный рабочий ток стабилитрона VD2. Операционный усилитель без обратной связи может возбудиться и тогда потребуется ввести конденсатор С4.

Не все операционные усилители подходят для регулируемого варианта блока (см. рис. 2). Нужно проследить, чтобы при уменьшении выходного напряжения до “нуля” потенциометром R7 процесс стабилизации не срывался. Иначе на выходе блока появится полное напряжение от выпрямителя.

Узел защиты состоит из шунта и тринистора 2У107А. Ток, проходящий через шунт, создает на нем пропорциональное падение напряжения. Как только напряжение достигнет определенного уровня, тринистор откроется и разбалансирует уравновешивающий мост R5-R8 (рис. 2). Тогда составной транзистор VT1-VT2 закроется и ток через нагрузку блока прекратится. Для возврата защиты в исходное состояние служит кнопка SB1. Здесь не следует применять тумблер или выключатель: можно забыть включить защиту. При необходимости получения максимального тока можно просто удерживать кнопку нажатой. В качестве шунта использован отрезок манганинового провода. Сечение и длина провода подбираются экспериментально в зависимости от требуемого тока и порога срабатывания защиты. Тринистор 2У107А по чувствительности, быстроте и надежности срабатывания оказался наиболее удачным выбором. Другие тринисторы не дали нужного результата.

Составной транзистор может быть собран из любых транзисторов при соблюдении общих правил, например: VT1-КТ808А, VT2-КТ815А. Подстроечное сопротивление R3 (рис.1) служит для настройки составного транзистора на максимальную отдачу тока. Для этого следует нагрузочным сопротивлением (например, 12 ом) кратковременно замыкать выход блока питания и установить R3 по меньшему отклонению выходного напряжения.

На основе изложенного был собран двуполярный лабораторный блок питания (см. рис. 3 и фото 1-3). Верхний по схеме стабилизатор удобно использовать без защиты. Вместе с нижним стабилизатором можно получить напряжение до 25 вольт, плюс защита от перегрузки. Транзистор VT1 необходимо изолировать от радиатора слюдяной прокладкой.

Детали блока питания собраны на печатной плате размером 80х110 мм. Корпус блока сделан из одностороннего фольгированного стеклотекстолита размером 235х100х160 мм. Детали корпуса скреплены между собой оловом. Верхняя крышка корпуса укреплена треугольными косынками. Передняя и задняя стенки скреплены с поддоном прямоугольниками. В них просверлены отверстия и изнутри припаяны гайки М3 для крепления крышки.

Фальшпанель крепится к передней панели с помощью винта и гайки через отверстие, просверленное посередине. На фальшпанель выведены светодиоды: красный - загорается при срабатывании защиты, зеленый - указывает о включенном состоянии блока в сеть. Для вольтметра и миллиамперметра вырезаны отверстия. Миллиамперметр отрегулирован шунтом на полное отклонение стрелки и срабатывание защиты при токе 300 миллиaмпер. Такая защита срабатывает мгновенно и спасла не одно устройство.

На задней панели находятся радиаторы с транзисторами VT1 и VT3, предохранитель, клеммы выходного напряжения, тумблер включения блока питания в сеть, тумблер переключения вольтметра, кнопка “Сброс защиты”.

Литература:

1. Журнал “Радио”, 1986 г., номер 9, стр. 48.

М. Файзуллин (UA9WNH/9), Тюменская обл., г. Нижневартовск

Интегральная микросхема (ИМС) КР142ЕН12А представляет собой регулируемый стабилизатор напряжения компенсационного типа в корпусе КТ-28-2, который позволяет питать устройства током до 1,5 А в диапазоне напряжений 1,2...37 В. Этот интегральный стабилизатор имеет термостабильную защиту по току и защиту выхода от короткого замыкания.

На основе ИМС КР142ЕН12А можно построить регулируемый блок питания, схема которого (без трансформатора и диодного моста) показана на рис.2 . Выпрямленное входное напряжение подается с диодного моста на конденсатор С1. Транзистор VT2 и микросхема DA1 должны располагаться на радиаторе.

Теплоотводящий фланец DA1 электрически соединен с выводом 2, поэтому если DAT и транзистор VD2 расположены на одном радиаторе, то их нужно изолировать друг от друга.

В авторском варианте DA1 ус-тановлена на отдельном небольшом радиаторе, который гальванически не связан с радиатором и транзистором VT2. Мощность, рассеиваемая микросхемой с теплоотводом, не должна превышать 10 Вт. Резисторы R3 и R5 образуют делитель напряжения, входящий в измерительный элемент стабилизатора. На конденсатор С2 и резистор R2 (служит для подбора термостабильной точки VD1) подается стабилизированное отрицательное напряжение -5 В. В авторском варианте напряжение подается от диод-ного моста КЦ407А и стабилизатора79L05, питающихся от отдельной обмотки силового трансформатора.

Для защиты от замыкания выходной цепи стабилизатора достаточно подключить параллельно резистору R3 электролитический конденсатор емкостью не менее 10 мкФ, а резистор R5 зашунтировать диодом КД521А. Расположение деталей некритично, но для хорошей температурной стабильности необходимо применить соответствующие типы резисторов. Их надо располагать как можно дальше от источников тепла. Общая стабильность выходного напряжения складывается из многих факторов и обычно не превышает 0,25% после прогрева.

После включения и прогрева устройства минимальное выходное напряжение 0 В устанавливают резистором Rao6. Резисторы R2 (рис.2 ) и резистор Rno6 (рис.3 ) должны быть многооборотными подстроечными из серии СП5.

Возможности по току у микросхемы КР142ЕН12А ограничены 1,5 А. В настоящее время в продаже имеются микросхемы с аналогичными параметрами, но рассчитанные на больший ток в нагрузке, например LM350 - на ток 3 A, LM338 - на ток 5 А. В последнее время в продаже появились импортные микросхемы из серии LOW DROP (SD, DV, LT1083/1084/1085). Эти микросхемы могут работать при пониженном напряжении между входом и выходом (до 1... 1,3 В) и обеспечивают на выходе стабилизированное напряжение в диапазоне 1,25...30 В при токе в нагрузке7,5/5/3 А соответственно. Ближайший по параметрам отечественный аналог типа КР142ЕН22 имеет максимальный ток стабилизации 7,5 А. При максимальном выходном токе, режим стабилизации гарантируется производителем при напряжении вход-выход не менее 1,5 В. Микросхемы также имеют встроенную защиту от превышения тока в нагрузке допустимой величины и тепловую защиту от перегрева корпуса. Данные стабилизаторы обеспечивают нестабильность выходного напряжения 0,05%/В, нестабильность выходного напряжения при изменении выходного тока от 10 мА до максимального значения не хуже 0,1%/В. На рис.4 показана схема БП для домашней лаборатории, позволяющая обойтись без транзисторов VT1 и VT2, показанных на рис.2.


Вместо микросхемы DA1 КР142ЕН12А применена микросхема КР142ЕН22А. Это регулируемый стабилизатор с малым падением напряжения, позволяющий получить в нагрузке ток до 7,5 А. Например, входное напряжение, подаваемое на микросхему, Uin=39 В, выходное напряжение на нагрузке Uout=30 В, ток на нагрузке louf=5 А, тогда максимальная рассеиваемая микросхемой мощность на нагрузке составляет 45 Вт. Электролитический конденсатор С7 применяется для снижения выходного импеданса на высоких частотах, а также понижает уровень напряжения шумов и улучшает сглаживание пульсаций. Если этот конденсатор танталовый, то его номинальная емкость должна быть не менее 22 мкФ, если алюминиевый - не менее 150 мкФ. При необходимости емкость конденсатора С7 можно увеличить. Если электролитический конденсатор С7 расположен на расстоянии более 155 мм и соединен с БП проводом сечением менее 1 мм, тогда на плате параллельно конденсатору С7, бли-же к самой микросхеме, устанавливают дополнительный электролитический конденсатор емкостью не менее 10мкФ. Емкость конденсатора фильтра С1 можно определить приближенно, из расчета 2000 мкФ на 1 А выходного тока (при напряжении не менее 50 В). Для снижения температурного дрейфа выходного напряжения резистор R8 должен быть либо проволочный, либо металлофольгированный с погрешностью не хуже 1%. Резистор R7 того же типа, что и R8. Если стабилитрона КС113А в наличии нет, можно применить узел, показанный на рис.3. Схемное решение защиты, приведенное в , автора вполне устраивает, так как работает безотказно и проверено на практике. Можно использовать любые схемные решения защиты БП, например предложенные в . В авторском варианте при срабатывании реле К1 замыкаются контакты К 1.1, закорачивая резистор R7, и напряжение на выходе БП становится равным 0 В. Печатная плата БП и расположение элементов показаны на рис.5, внешний вид БП - на рис.6.

Представленные ниже радиолюбительские схемы защиты блоков питания или зарядных устройств могут совместно работать практически с любыми источниками - сетевыми, импульсными и аккумуляторными батареями. Схемотехническая реализация этих конструкция относительна проста и доступна для повторения даже начинающим радиолюбителем.

Силовая часть выполнена на мощном полевом транзистор. В процессе работы он не перегревается, поэтому теплоотвод можно не использовать. Устройство одновременно является отлично защитой от переплюсовки, перегрузки и короткого замыкания в выходной цепи, ток срабатывания можно подобрать подбором резистора шунта, в нашем случае он составляет 8 Ампер, использовано 6 параллельно подключенных сопротивлений мощностью 5 ватт 0,1 Ом. Шунт можно сделать также из сопротивления мощностью 1-3 ватт.


Более точно защиту можно подстроить путем регулировки сопротивления подстроечного резистора. При коротком замыкании и перегрузке на выходе, защита почти сразу сработает, отключив блок питания. О сработавшей защите подскажет светодиод. Даже при замыкании выхода на 30-40 секунд, полевик остается почти холодным. Его тип не критичен, подойдут практически любые силовые ключи с током 15-20 Ампер на рабочее напряжение 20-60 Вольт. Отлично подойдут транзисторы из серии IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48 или более мощные.

Данный вариант схемы будет полезен автолюбителям в роли защиты зарядного устройства для свинцовых аккумуляторов, если вдруг перепутаете полярность подсоединения, то с ЗУ ничего страшного не случится.

Благодаря быстрому срабатыванию защиты, ее можно отлично использовать для импульсных схем, при коротком замыкании защита сработает гораздо быстрее, чем перегорят силовые ключи импульсного БП. Конструкция подойдет также для импульсных инверторов, в роли токовой защиты.

Защита от короткого замыкания на MOSFET-транзисторе

Если в ваших блоках питания и ЗУ для переключения нагрузки используется полевой транзистор (MOSFET), то вы можете легко добавить в такую схему защиту от короткого замыкания или перегрузки. В данном примере мы будем применять внутреннее сопротивление RSD, на котором возникает падение напряжения, пропорциональное току, идущему через MOSFET.

Напряжение, следующее через внутренний резистор, может регистрироваться с помощью компаратора или даже транзистора, переключающегося при напряжении уровнем от 0.5 В, т.е, можно отказаться от применения токочувствительного сопротивления (шунта), на котором обычно возникает излишек напряжения. За компаратором можно следить с помощью микроконтроллера. В случае КЗ или перегрузки программно можно запустить ШИМ-регулирование, сигнализацию, аварийную остановку). Возможно также подсоединение выхода компаратора к затвору полевого транзистора, если при возникновении КЗ нужно сразу же отключить полевик.

Блок питания с системой защиты от КЗ

Начиниющие радиолюбители, которых большинство, для сборки регулированного блока питания выбирают схемы попроще. Такую схемку решил сделать и я, так как возможностей достать дорогие детали и настроить сложный БП вряд-ли получится.

Самое основное для любой конструкции корпус. Тут мне повезло досать нерабочий БП ATX от компьютера, куда и будет помещён будущий блок питания.


Разъёмы сзади для сети 220В оставил, а на место кулера прикрутил обычную розетку, так как их постоянно не хватает для массы моих электронных устройств. Короче лишней она не будет.


Печатная плата блока питания простейшая и изготовить её будет легко даже начинающим. В крайнем случае можно вырезать дорожки резаком, а не травить. Для защиты по максимальному току - а это обязательно должно быть в радиолюбительском блоке питания, выбрал схему электронного предохранителя с индикацией перегрузки на светодиоде.


Передняя панель блока питания изготавливается из пластика, текстолита или даже фанеры - кто на что богат. На ней будут крепиться стрелочные индикаторы - вольтметр и амперметр (как впоследствии стало понятно, что это намного лучше и удобней цифровой индикации), регулятор напряжения и кнопки включения и переключения режимов защиты. Я выбрал 0,1 и 1А, но можно расчитать резистор токовой защиты на любое значение.


Ещё на передней панели блока питания будут две клеммы для подключения проводов выхода БП.


Получается вот что-то уже похожее на блок питания. Трансформатор выбираем такой, чтоб он поместился в корпус. Так что если вы идёте его покупать на радиобазаре - сначала замеряйте габариты коробки.


Корпус обклеиваем самоклеющейся плёнкой или красим лаком.


Зелёный светодиод будет светиться при включении БП в сеть, а красный сигнализирует о срабатывании защиты от токовой перегрузки.


Здесь написано как рассчитать шунт для стрелочных индикаторов. А чтоб нанести на шкалу новые значения вольт и ампер, придётся раскрыть их корпуса и аккуратно наклеить бумажки с новыми значениями поверх старых.

При наладке различной электро-радио аппаратуры бывает все идет не так как нам хотелось бы и происходит КЗ (короткое замыкание). Короткое замыкание опасно как для устройства, так и для человека, налаживающего его. Для защиты аппаратуры можно использовать устройство, схема которого представлена ниже.

Принцип работы

В качестве контролирующего элемента от короткого замыкания выступает реле Р1, оно подключено параллельно нагрузке. При подаче напряжения на вход устройства через обмотку реле протекает ток, реле подключает нагрузку, при этом лампа не горит. Во время короткого замыкания напряжение на реле резко упадет, и оно отключит нагрузку, лампа при этом загорит и просигнализирует о КЗ. Резистор R1 служит для регулировки порога срабатывания по току, его номинал рассчитывается по формуле

R1=U сети /I доп

U сети –напряжение сети, I доп –максимально допустимый ток.

Например напряжение сети 220В, ток при котором реле будет срабатывать 10А. Считаем 220 В/10 А=22 Ом.

Мощность реле рассчитывается по формуле 0,2 * I доп

Резистор R1 следует брать мощностью от 20 Вт.

На этом все. Если у Вас есть замечания или предложения по данной статье, прошу написать администратору сайта.

Список используемой литературы: В.Г. Бастанов Московский рабочий. «300 Практических советов»