Физику знать надо. Простое и понятное обучение физике

Самая распространенная жалоба школьника на трудность предмета звучит так: “Зачем мне эта дурацкая …. (тут можно поставить что угодно – физику, математику, историю, биологию), если я не собираюсь заниматься ей после школы?!”

Действительно, а нужно ли бедному ребеночку зубрить формулы и разбираться с законами Ньютона и Фарадея? Может, ну ее, эту пакость, займемся лучше чем-то интересным? Удивительно, но многие взрослые и сами не понимают, зачем учили физику в школе и искренне не видят связи между этой занимательной наукой и повседневной жизнью. Давайте же найдем эту связь!

Представьте себе свой обычный день. Вот вы встали с кровати, потянулись и посмотрели в зеркало. И законы физики заработали прямо с началом вашего дня!

Движение, отражение в зеркале, гравитация, которая заставляет вас идти по земле, а воду течь в раковину, а не вам в лицо, сила, которая требуется для того, чтобы поднять сумку или открыть дверь – все это физика .

Обратите внимание на лифт, легко и быстро поднимающий вас на нужный этаж, автомобиль или другой транспорт, компьютеры, планшеты и телефоны. Без физики все это никуда бы не поехало, не включилось и не заработало.

Развитие физики можно приравнять к прогрессу.

Сначала люди поняли законы оптики и изобрели простые очки , чтобы те, кто плохо видит, могли лучше ориентироваться, читать и писать. А затем на свете появились микроскопы , с помощью которых ученые сделали невероятные открытия в таких областях, как биология и медицина. И телескопы , в которые астрономы увидели планеты, звезды и целые галактики и смогли сделать выводы об устройстве Вселенной. Каждое открытие в физике помогает человечеству сделать новый шаг вперед.

Хорошо, скажете вы. Но ведь для всего перечисленного, для всех этих открытий и разработок существуют физики. То есть люди, сознательно выбравшие именно эту науку своей основной профессией. Причем же здесь остальные, да еще и гуманитарии? Им-то на что эти знания, если можно просто прочитать инструкцию к своему телефону и этого будет достаточно для его использования?


Мы уже писали, что , но кроме этого, приведем несколько примеров из повседневной жизни, когда базовое знание физики может пригодиться каждому. Причем, разберем только один раздел физики, практически полностью созданный Исааком Ньютоном, - механику.

Движение, скорость, ускорение.

Итак, все во Вселенной постоянно двигается, включая нашу планету и землю, по которой мы ходим. А ходим мы почти ежедневно в разные места. Значит, мы постоянно рассчитываем, насколько быстро доберемся до театра, работы, друзей, чтобы не опоздать. Задачи на скорость мы решаем в средней школе в рамках курса математики, но на самом деле это базовая физика.


Теперь представьте, что вы выбираете машину. У вас есть желание получить резвый автомобиль, но вам нужно возить семью, поэтому размер тоже имеет значение. То есть резвый и большой. И как же понять, какой подойдет? На что вы обратите внимание? На ускорение , конечно! Есть такой параметр – постоянное ускорение, то есть разгон от 0 до 100 км за количество секунд. Так вот чем меньше время от 0 до 100, тем бодрее будет ваша машина на старте и виражах. И это подскажет вам физика!

Когда вы начинаете (и продолжаете) водить машину, кое-что из базового курса физики вам очень пригодится. Например, вы сами поймете, что резко тормозить на трассе при скорости 120 км/ч только потому, что вам внезапно захотелось полюбоваться красивым видом, пожалуй, не стоит.


Даже если за вами не едет на такой же скорости еще несколько автомобилей, водители которых могут не успеть среагировать. Просто при торможении ускорение отрицательное, поэтому всех, кто сидит в машине, резко бросает вперед. Поверьте, впивающиеся в тело ремни и растянутые шейные мышцы – это неприятно. Просто имейте в виду такое понятие из физики, как ускорение.

Сила тяготения, импульс и другие полезности.

Физика расскажет о законе тяготения . То есть мы уже и так знаем, что если бросить предмет, то он упадет на землю. Что это значит? Земля притягивает нас и все предметы. Мало того, планета Земля притягивает даже такой тяжелый космический предмет, как Луна. Заметим, что Луна не улетает по своей траектории и каждый вечер показывается людям. Также не зависают в воздухе любые штуки, которые мы в сердцах бросили на пол. На брошенные предметы действует еще и ускорение, потому что у Земли огромная сила притяжения. А также сила трения.


Поэтому, зная об этих законах, можно понять, что происходит, если человек прыгает с парашютом. Связана ли площадь парашюта связана с замедлением скорости падения? Может, стоит просить парашют побольше? Как действует импульс на коленки парашютиста, и почему нельзя приземляться на прямые ноги?

А как выбрать горные лыжи? Вы отлично катаетесь или только начинаете? Подумайте о трении, уточните именно эти параметры своих новых лыж. Если вы новичок, не знающий физики, то очень вероятна ошибка в выборе. Успеете ли вы остановиться?


Окей, вы не собираетесь прыгать с парашютом и ничего не хотите знать про горные лыжи.

Вернемся к повседневности. Вот перед вами гайка и гаечный ключ. За какую часть ключа нужно взяться, чтобы приложить к гайке максимальную силу? Те, кто изучал физику, возьмутся за ключ как можно дальше от гайки. Чтобы открыть тяжеленную дверь в старое здание, нужно давить на нее с самого краю, подальше от петель. Нужно ли рассказывать про рычаг и точку опоры, которой так не хватало Галилею?


Наверное, этих примеров пока достаточно для иллюстрации ежедневного присутствия физики в нашей жизни. И это была только механика! А ведь есть еще оптика, которую мы упоминали в начале статьи, и электричество с магнитными полями. И это мы скромно молчим про теорию относительности.

Поверьте, физика на базовом уровне необходима каждому, чтобы не выглядеть глупо и смешно в самых обычных ситуациях.

«Теоретический минимум» - книга для тех, кто пропускал уроки физики в школе и институте, но уже жалеет об этом. Хотите разобраться в основах естественных наук и научиться думать и рассуждать так, как это делают современные физики? В оригинальной и нестандартной форме известные американские ученые Леонард Сасскинд и Джордж Грабовски предлагают вводный курс по математике и физике для пытливых умов. В отличие от прочих научно-популярных книг, пытающихся доступно объяснить законы физики, ловко уклоняясь от уравнений и формул, авторы учат читателя классическим основам естественных наук. Книга предлагает собственную оригинальную методику обучения, дополненную видеолекциями, публикуемыми на сайте theoreticalminimum.com.

Что такое классическая физика?
Термин классическая физика относится к той физике, которая существовала до появления квантовой механики. Классическая физика включает ньютоновские законы движения частиц, теорию электромагнитного поля Максвелла-Фарадея и общую теорию относительности Эйнштейна. Но это нечто большее, чем просто конкретные теории конкретных явлений; это ряд принципов и правил - базовая логика, подчиняющая себе все явления, для которых несущественна квантовая неопределенность. Этот свод общих правил называется классической механикой.
Задача классической механики состоит в предсказании будущего. Великий физик восемнадцатого века Пьер-Симон Лаплас выразил это в знаменитой цитате:

"Состояние Вселенной в данный момент можно рассматривать как следствие ее прошлого и как причину ее будущего. Мыслящее существо, которое в определенный момент знало бы все движущие силы природы и все положения всех объектов, из которых состоит мир, могло бы - если бы его разум был достаточно обширен для того, чтобы проанализировать все эти данные,- выразить одним уравнением движение и самых больших тел во Вселенной, и мельчайших атомов; для такого интеллекта не осталось бы никакой неопределенности и будущее открылось бы перед его взором точно так же, как и прошлое."

Содержание
Предисловие
Лекция 1 Природа классической физики
Интерлюдия 1 Пространства, тригонометрия и векторы
Лекция 2 Движение
Интерлюдия 2 Интегральное исчисление
Лекция 3 Динамика
Интерлюдия 3 Частное дифференцирование
Лекция 4 Системы из более чем одной частицы
Лекция 5 Энергия
Лекция 6 Принцип наименьшего действия
Лекция 7 Симметрии и законы сохранения
Лекция 8 Гамильтонова механика и симметрия относительно сдвига во времени
Лекция 9 Фазовая жидкость и теорема Гиббса-Лиувилля
Лекция 10 Скобка Пуассона, угловой момент и симметрии
Лекция 11 Электрические и магнитные силы
Приложение Центральные силы и планетные орбиты.

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес» , и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Начинаем серию статей о проблемах и устаревших концепциях в школьной программе и предлагаем порассуждать о том, зачем школьникам нужна физика, и почему сегодня её преподают не так, как хотелось бы.

Для чего современный школьник изучает физику? Или для того, чтобы ему не надоедали родители и учителя, или же затем, чтобы успешно сдать ЕГЭ по выбору, набрать нужное количество баллов и поступить в хороший вуз. Есть ещё вариант, что школьник физику любит, но эта любовь обычно существует как-то отдельно от школьной программы.

В любом из этих случаев преподавание ведётся по одинаковой схеме. Оно подстраивается под систему собственного контроля - знания должны преподноситься в такой форме, чтобы их можно было легко проверить. Для этого и существует система ГИА и ЕГЭ, а подготовка к этим экзаменам в результате и становится главной целью обучения.

Как устроено ЕГЭ по физике в его сегодняшнем варианте? Задания экзамена составляются по специальному кодификатору , куда входят формулы, которые, по идее, должен знать каждый ученик. Это около сотни формул по всем разделам школьной программы - от кинематики до физики атомного ядра.

Большая часть заданий - где-то 80% - направлена именно на применение этих формул. Причем другие способы решения использовать нельзя: подставил формулу, которой нет в списке - недополучил какое-то количество баллов, даже если ответ сошелся. И только оставшиеся 20% - это задачи на понимание.

В результате главная цель преподавательской работы сводится к тому, чтобы ученики знали этот набор формул и могли его применять. А вся физика сводится к несложной комбинаторике: прочитай условия задачи, пойми, какая формула тебе нужна, подставь нужные показатели и просто получи результат.

В элитарных и специализированных физико-математических школах обучение, конечно, устроено иначе. Там, как и при подготовке к всевозможным олимпиадам, присутствует какой-то элемент творчества, а комбинаторика формул становится намного сложнее. Но нас здесь интересует именно базовая программа по физике и её недостатки.

Стандартные задачи и абстрактные теоретические построения, которые должен знать обычный школьник, очень быстро выветриваются из головы. В результате физику после окончания школы уже никто не знает - кроме того меньшинства, которому это почему-то интересно или нужно по специальности.

Получается, что наука, главной целью которой было познание природы и реального физического мира, в школе становится донельзя абстрактной и удаленной от повседневного человеческого опыта. Физику, как и другие предметы, учат зубрёжкой, а когда в старших классах объём знаний, который необходимо усвоить, резко возрастает, всё зазубрить становится просто невозможно.

Наглядно о «формульном» подходе к обучению.

Но это было бы и необязательно, если бы целью обучения было не применение формул, а понимание предмета. Понимать - это, в конечном счёте, намного легче, чем зубрить.

Формировать картину мира

Посмотрим, к примеру, как работают книжки Якова Перельмана «Занимательная физика», «Занимательная математика», которыми зачитывались многие поколения школьников и после-школьников. Почти каждый параграф перельмановской «Физики» учит ставить вопросы, которые каждый ребенок может себе задать, отталкиваясь от элементарной логики и житейского опыта.

Задачки, которые нам здесь предлагают решить - не количественные, а качественные: нужно не подсчитать какой-то абстрактный показатель вроде коэффициента полезного действия, а поразмышлять, почему вечный двигатель невозможен в реальности, можно ли выстрелить из пушки до луны; нужно провести опыт и оценить, каким будет эффект от какого-либо физического взаимодействия.

Пример из «Занимательной физики» 1932 года: задача о крыловских лебеде, раке и щуке, решённая по правилам механики. Равнодействующая (OD) должна увлекать воз в воду.

Одним словом, заучивать формулы здесь не обязательно - главное понимать, каким физическим законам подчиняются предметы окружающей действительности. Проблема только в том, что знания такого рода куда сложнее поддаются объективной проверке, чем наличие в голове школьника точно определённого набора формул и уравнений.

Поэтому физика для обычного ученика оборачивается тупой зубрежкой, а в лучшем случае - некой абстрактной игрой ума. Формировать у человека целостную картину мира - совсем не та задача, которую де факто выполняет современная система образования. В этом отношении, кстати, она не слишком отличается от советской, которую многие склонны переоценивать (потому что раньше мы, мол, атомные бомбы разрабатывали и в космос летали, а сейчас только нефть умеем продавать).

По знанию физики ученики после окончания школы сейчас, как и тогда, делятся примерно на две категории: те, кто знает её очень хорошо, и те, кто не знает совсем. Со второй категорией ситуация особенно ухудшилась, когда время преподавания физики в 7-11 классе сократилось с 5 до 2 часов в неделю.

Большинству школьников физические формулы и теории действительно не нужны (что они прекрасно понимают), а главное - неинтересны в том абстрактном и сухом виде, в котором они преподносятся сейчас. В итоге массовое образование не выполняет никакой функции - только отнимает время и силы. У школьников - не меньше, чем у учителей.

Attention: неправильный подход к преподаванию точных наук может иметь разрушительные последствия

Если бы задачей школьной программы было формирование картины мира, ситуация была бы совершенно иной.

Конечно, должны быть и специализированные классы, где учат решать сложные задачи и глубоко знакомят с теорией, которая уже не пересекается с повседневным опытом. Но обычному, «массовому» школьнику было бы интереснее и полезнее знать, по каким законам работает физический мир, в котором он живет.

Дело, конечно, не сводится к тому, чтобы школьники вместо учебников читали Перельмана. Нужно изменить сам подход к преподаванию. Многие разделы (например, квантовую механику) можно было бы изъять из школьной программы, другие - сократить или пересмотреть, если бы не вездесущие организационные трудности, принципиальный консерватизм предмета и образовательной системы в целом.

Но позволим себе немного помечтать. После этих изменений, может быть, повысилась бы и общая социальная адекватность: люди бы меньше верили всяческим торсионным аферистам, спекулирующим на «защите биополя» и «нормализации ауры» с помощью нехитрых приспособлений и кусков неведомых минералов.

Все эти последствия порочной системы образования мы уже наблюдали в 90-е, когда самые удачливые мошенники даже пользовались немалыми суммами из госбюджета, - наблюдаем и сейчас, хотя и в меньших масштабах.

Знаменитый Григорий Грабовой не только уверял, что может воскрешать людей, но и отводил астероиды от Земли силой мысли и «экстрасенсорно диагностровал» правительственные самолёты. Ему покровительствовал не кто-нибудь, а генерал Георгий Рогозин, заместитель начальника Службы безопасности при президенте РФ.

Чтобы успешно сдать экзамен по физике, необходимо быть внимательным на занятиях в классе, регулярно изучать новый материал и достаточно глубоко понимать основные идеи и принципы. Для этого можно использовать несколько методов и сотрудничать с одноклассниками, чтобы закрепить знания. Кроме того, важно хорошо отдохнуть и как следует перекусить перед экзаменом, а также сохранять спокойствие во время него. Если вы как следует учились перед экзаменом, то сможете сдать его без особых проблем.

Шаги

Как извлечь максимальную пользу из занятий в классе

    Начните изучать пройденный материал за несколько дней или недель до экзамена. Вряд ли вы нормально сдадите экзамен, если начнете готовиться к нему в последний вечер. Запланируйте время для изучения и закрепления материала и решения практических заданий за несколько дней или даже недель до экзамена, чтобы успеть как следует подготовиться к нему.

    • Постарайтесь как можно лучше усвоить необходимый материал, чтобы уверенно чувствовать себя во время экзамена.
  1. Просмотрите темы, которые могут попасться на экзамене. Скорее всего, именно эти темы вы проходили в последнее время на уроках, и вам задавали по ним домашние задания. Просмотрите записи, которые вы вели в классе, и постарайтесь запомнить основные формулы и понятия, которые могут понадобиться при сдаче экзамена.

  2. Читайте перед классными занятиями учебник. Заранее знакомьтесь с соответствующей темой, чтобы лучше усвоить материал во время урока. Многие физические принципы базируются на том, что вы изучали ранее. Определите те моменты, которые вам не ясны, и запишите вопросы, чтобы задать их учителю.

    • Например, если вы уже выучили, как определить скорость, вполне вероятно, что на следующем этапе вы узнаете о том, как вычислить среднее ускорение. Заранее знакомьтесь с соответствующим разделом учебника, чтобы лучше усвоить материал.
  3. Решайте задачи дома. После каждого часа занятий в школе тратьте не менее 2–3 часов на то, чтобы запомнить новые формулы и научиться пользоваться ими. Такое повторение поможет вам лучше усвоить новые идеи и научиться решать задачи, которые могут встретиться на экзамене.

    • При желании можно засекать время, чтобы воспроизвести условия предстоящего экзамена.
  4. Просматривайте и исправляйте свои домашние работы. Просматривайте выполненные домашние работы и старайтесь заново решить те задачи, которые вызвали у вас затруднения или были выполнены неправильно. Учтите, что многие преподаватели задают на экзамене те же вопросы и задания, которые встречались в домашних заданиях.

    • Следует просматривать даже правильно выполненные задания, чтобы закрепить пройденный материал.
  5. Посещайте все занятия и будьте внимательны. В физике новые идеи и концепции строятся на предыдущих знаниях, поэтому так важно не пропускать уроки и регулярно заниматься, иначе можно отстать от других. Если вы не можете посетить занятие, обязательно достаньте его конспект и прочитайте соответствующий раздел в учебнике.

    • Если вы не можете посещать занятия из-за чрезвычайной ситуации или болезни, спросите у преподавателя, какой материал необходимо выучить.
  6. Используйте карточки, чтобы лучше запомнить различные термины и формулы. Запишите на одной стороне карточки название физического закона, а на другой - соответствующую формулу. Попросите кого-нибудь громко прочесть название формулы, после чего постарайтесь правильно записать ее.

    • Например, можно написать на одной стороне карточки «скорость», а на второй указать соответствующую формулу: «v=s/t».
    • Можно написать на одной стороне карточки «второй закон Ньютона», а на второй указать соответствующую формулу: «∑F = ma».
  7. Вспомните, что вызывало у вас наибольшие проблемы на прошлых экзаменах. Если вы уже писали контрольные работы или сдавали экзамены раньше, необходимо уделить особое внимание тем темам, которые вызывали у вас трудности. Таким образом вы подтянете свои слабые места и сможете получить более высокую оценку.

    • Это особенно полезно сделать перед финальными экзаменами, на которых оцениваются знания по многим разделам физики.

Как подготовиться накануне экзамена

  1. Поспите в ночь перед экзаменом 7–8 часов . Необходимо как следует выспаться, чтобы легче вспоминать пройденный материал и находить правильные решения задач. Если вы будете зубрить всю ночь и не отдохнете, то на следующее утро плохо будете помнить то, что учили накануне.

    • Даже если экзамен запланирован на середину дня, лучше встать пораньше и заранее настроиться.
    • В физике требуется повышенное внимание и критическое мышление, поэтому лучше приходить на экзамен хорошо отдохнувшим и выспавшимся.
    • Соблюдайте привычный режим сна - это позволит вам закрепить полученные знания.
  2. Как следует позавтракайте в день экзамена. На завтрак полезно есть продукты, богатые медленно усваиваемыми углеводами, например овсяные хлопья или хлеб из цельных зерен - это поможет эффективнее действовать во время экзамена. Следует также поесть белковой пищи, такой как яйца, йогурт или молоко, чтобы дольше оставаться сытым. И наконец, обеспечьте свой организм дополнительным зарядом энергии: завершите завтрак фруктами, в которых содержится много пищевых волокон, например яблоками, бананами или грушами.

    • Здоровый, сытный завтрак перед экзаменом поможет вам лучше вспомнить пройденный материал.

Все, что происходит в нашем мире, происходит благодаря воздействию определенных сил в физике. И выучить каждую из них придется если не в школе, то уж в институте точно.

Конечно, вы можете попытаться вызубрить их. Но гораздо быстрее, веселее и интереснее будет просто осознать суть каждой физической силы как она взаимодействует с окружающей средой.

Силы в природе и фундаментальные взаимодействия

Сил существует огромное множество. Сила Архимеда, сила тяжести, сила Ампера, сила Лоренца, Кореолиса, сила трения-качения и др. Собственно, все силы выучить невозможно, так как не все они еще открыты. Но и это очень важно - все без исключения известные нам силы можно свести к проявлению так называемых фундаментальных физических взаимодействий .

В природе существуют 4 фундаментальных физических взаимодействия. Точнее будет сказать, что людям известны 4 фундаментальных взаимодействия, и на данный момент иных взаимодействий не обнаружено. Что это за взаимодействия?

  • Гравитационное взаимодействие
  • Электромагнитное взаимодействие
  • Сильное взаимодействие
  • Слабое взаимодействие

Так, сила тяжести - проявление гравитационного взаимодействия. Большинство механических сил (сила трения, сила упругости) являются следствием электромагнитного взаимодействия. Сильное взаимодействие удерживает нуклоны ядра атома вместе, не давая ядру распасться. Слабое взаимодействие заставляет распадаться свободные элементарные частицы. При этом, электромагнитное и слабое взаимодействия объединены в электрослабое взаимодействие .

Возможным пятым фундаментальным взаимодействием (после открытия бозона Хиггса ) называют поле Хиггса . Но в этой области все изучено настолько мало, что мы не будем спешить с выводами, а лучше подождем, что скажут нам ученые из ЦЕРНа.

Учить законы физики можно двумя способами.

Первый – тупо выучить значения, определения, формулы. Существенный недостаток этого способа – он вряд ли поможет ответить на дополнительные вопросы преподавателя. Есть и другой немаловажный минус этого метода – выучив таким образом, вы не получите самого главного: понимания. В итоге, заучивание правила/формулы/закона или чего бы там ни было позволяет приобрести лишь непрочные, кратковременные знания по теме.

Второй способ – понимание изучаемого материала. Но так ли легко понять то, что понять (по вашему мнению) невозможно?

Есть, есть решение этой ужасно трудной, но решабельной проблемы! Вот несколько способов того, как выучить все силы в физике (и вообще в любом другом предмете):


На заметку!

Важно помнить и знать все физические силы (ну или выучить весь список их в физике), чтобы избежать неловких недоразумений. Помните, что масса тела – это не его вес, а мера его инертности. Например, в условиях невесомости тела не имеют веса, потому как отсутствует гравитация. А вот если вы захотите сдвинуть тело в невесомости с места, придется воздействовать на него с определенной силой. И чем выше масса тела, тем большую силу придется задействовать.

Если вам удастся представить себе, каким образом вес человека может меняться в зависимости от выбора планеты, вам удастся довольно быстро разобраться с понятием гравитационной силы, с понятиями веса и массы, силой ускорения и прочими физическими силами. Это понимание принесет с собой логическое осознание других происходящих процессов, и в результате вам не придется даже заучивать непонятный материал – вы сможете запоминать его по мере прохождения. Достаточно просто понять суть.

  1. Чтобы понять электромагнитное воздействие, достаточно будет просто понять, каким образом ток протекает по проводнику и какие при этом образуются поля, как эти поля взаимодействуют руг с другом. Рассмотрите это на простейших примерах, и вам не составит труда разбираться в принципах работы электродвигателя, принципах горения электрической лампочки и пр.

Преподавателя в первую очередь будет волновать то, насколько хорошо вы разбираетесь в изученном материале. И не так уж важно, будете ли вы помнить назубок все формулы. А в случае решения контрольных, лабораторных, задач, практических работ или купить РГР вам всегда смогут помочь наши специалисты , сила которых таится в знаниях и многолетнем практическом опыте!