Внутреннее потребление электроэнергии. «Пожиратели» энергии Главный потребитель электроэнергии

Информация для данного раздела подготовлена на основании данных АО «СО ЕЭС».

Энергосистема Российской Федерации состоит из ЕЭС России (семь объединенных энергосистем (ОЭС) – ОЭС Центра, Средней Волги, Урала, Северо-Запада, Юга и Сибири) и территориально изолированных энергосистем (Чукотский автономный округ, Камчатский край, Сахалинская и Магаданская область, Норильско-Таймырский и Николаевский энергорайоны, энергосистемы северной части Республики Саха (Якутия)).

Потребление электрической энергии

Фактическое потребление электроэнергии в Российской Федерации в 2018 г. составило 1076,2 млрд кВт∙ч (по ЕЭС России 1055,6 - млрд кВт∙ч), что выше факта 2017 г. на 1,6% (по ЕЭС России - на 1,5%).

В 2018 г. увеличение годового объема электропотребления ЕЭС России из‑за влияния температурного фактора (на фоне понижения среднегодовой температуры относительно прошлого года на 0,6°С) оценивается величиной около 5,0 млрд кВт-ч. Наиболее значительное влияние температуры на изменение динамики электропотребления наблюдалось в марте, октябре и декабре 2018 г.,
когда соответствующие отклонения среднемесячных температур достигали максимальных значений.

Кроме температурного фактора на положительную динамику изменения электропотребления в ЕЭС России в 2018 г. повлияло увеличение потребления электроэнергии промышленными предприятиями. В большей степени этот прирост обеспечен на металлургических предприятиях, предприятиях деревообрабатывающей промышленности, объектах нефте-газопроводного и железнодорожного транспорта.

В течение 2018 г. значительный рост потребления электроэнергии на крупных металлургических предприятиях, повлиявший на общую положительную динамику изменения объемов электропотребления в соответствующих территориальных энергосистемах, наблюдался:

  • в энергосистеме Вологодской области (прирост потребления 2,7% к 2017 г.) - увеличение потребления ПАО «Северсталь»;
  • в энергосистеме Липецкой области (прирост потребления 3,7% к 2017 г.) - увеличение потребления ПАО «НЛМК»;
  • в энергосистеме Оренбургской области (прирост потребления 2,5% к 2017 г.) - увеличение потребления АО «Уральская сталь»;
  • в энергосистеме Кемеровской области (прирост потребления 2,0% к 2017 г.) - увеличение потребления АО «Кузнецкие ферросплавы».

В составе крупных промышленных предприятий деревообрабатывающей промышленности, увеличивших в отчетном году потребление электроэнергии:

  • в энергосистеме Пермской области (прирост потребления 2,5% к 2017 г.) - увеличение потребления АО «Соликамскбумпром»;
  • в энергосистеме Республики Коми (прирост потребления 0,9% к 2017 г.) - увеличение потребления АО «Монди СЛПК».

Среди промышленных предприятий нефтепроводного транспорта, увеличивших в 2018 г. годовые объемы потребления электроэнергии:

  • в энергосистемах Астраханской области (прирост потребления (1,2% к 2017 г.) и Республики Калмыкия (прирост потребления 23,1% к 2017 г.) - увеличение потребления АО «КТК-Р» (Каспийский трубопроводный консорциум);
  • в энергосистемах Иркутской (прирост потребления 3,3% к 2017 г.), Томской (прирост потребления 2,4% к 2017 г.), Амурской областей (прирост потребления 1,5% к 2017 г.) и Южно-Якутского энергорайона энергосистемы Республики Саха (Якутия) (прирост потребления 14,9% к 2017 г.) - увеличение потребления магистральными нефтепроводами на территориях указанных субъектов Российской Федерации.

Увеличение объемов потребления электроэнергии предприятиями газотранспортной системы в 2018 г. отмечено на промышленных предприятиях:

  • в энергосистеме Нижегородской области (прирост потребления 0,4% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Нижний Новгород»;
  • в энергосистеме Самарской области (прирост потребления 2,3% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Самара»;
  • в энергосистемах Оренбургской (прирост потребления 2,5% к 2017 г.) и Челябинской областей (прирост потребления 0,8% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Екатеринбург»;
  • в энергосистеме Свердловской области (прирост потребления 1,4% к 2017 г.) - увеличение потребления ООО «Газпром трансгаз Югорск».

В 2018 г. наиболее значительное увеличение объемов железнодорожных перевозок и вместе с ним увеличение годовых объемов потребления электроэнергии предприятиями железнодорожного транспорта наблюдалось в ОЭС Сибири в энергосистемах Иркутской области, Забайкальского и Красноярского краев и Республики Тыва, а также в границах территорий энергосистем г. Москвы и Московской области и г. Санкт-Петербурга и Ленинградской области.

При оценке положительной динамики изменения объема потребления электроэнергии следует отметить рост в течение всего 2018 г. электропотребления на предприятии АО «СУАЛ» филиал «Волгоградский алюминиевый завод».

В 2018 г. с увеличением объема производства электроэнергии на тепловых и атомных электростанциях наблюдалось увеличение расхода электроэнергии на собственные, производственные и хозяйственные нужды электростанций. Для АЭС это проявилось в значительной мере с вводом в 2018 г. новых энергоблоков №5 на Ленинградской АЭС и №4 на Ростовской АЭС.

Производство электрической энергии

В 2018 г. выработка электроэнергии электростанциями России, включая производство электроэнергии на электростанциях промышленных предприятий, составила 1091,7 млрд кВт∙ч (по ЕЭС России - 1070,9 млрд кВт∙ч) (табл. 1, табл. 2).

Увеличение к объему производства электроэнергии в 2018 г. составило 1,7%, в том числе:

  • ТЭС - 630,7 млрд кВт∙ч (падение на 1,3%);
  • ГЭС - 193,7 млрд кВт∙ч (увеличение на 3,3%);
  • АЭС - 204,3 млрд кВт∙ч (увеличение на 0,7%);
  • электростанции промышленных предприятий - 62,0 млрд кВт∙ч (увеличение на 2,9%).
  • СЭС - 0,8 млрд кВт∙ч (увеличение на 35,7%).
  • ВЭС - 0,2 млрд кВт∙ч (увеличение на 69,2%).

Табл. 1 Баланс электрической энергии за 2018 г., млрд кВтч

Изменение, % к 2017

Выработка электроэнергии, всего

Электростанции промышленных предприятий

Потребление электроэнергии

Сальдо перетоков электроэнергии, «+» - прием, «-» - выдача

Табл. 2 Производство электроэнергии в России по ОЭС и энергозонам в 2018 г., млрд кВтч

Изменение, % к 2017

Энергозона Европейской части и Урала, в т.ч.: числе:

ОЭС Центра

ОЭС Северо-Запада

ОЭС Средней Волги

ОЭС Урала

Энергозона Сибири, в т.ч.:

ОЭС Сибири

Энергозона Востока, в т.ч.:

ОЭС Востока

Изолированные энергорайоны

Итого по России

* - Норильско-Таймырский энергетический комплекс

Структура и показатели использования установленной мощности

Число часов использования установленной мощности электростанций в целом по ЕЭС России в 2018 г. составило 4411 часов или 50,4% календарного времени (коэффициент использования установленной мощности) (табл. 3, табл. 4).

В 2018 г. число часов и коэффициент использования установленной мощности (доля календарного времени) по типам генерации следующие:

  • ТЭС - около 4 075 часов (46,5% календарного времени);
  • АЭС - 6 869 часов (78,4% календарного времени);
  • ГЭС - 3 791 часов (43,3% календарного времени);
  • ВЭС - 1 602 часов (18,3% календарного времени);
  • СЭС - 1 283 часов (14,6% календарного времени).

По сравнению с 2017 г. использование установленной мощности на ТЭС и ГЭС увеличилось на 20 и 84 часа соответственно, снизилось на СЭС на 2 часа.

Существенно, на 409 часов снизилось использование установленной мощности АЭС, а использование установленной мощности ВЭС наоборот увеличилось на 304 часа.

Табл. 3 Структура установленной мощности электростанций объединенных энергосистем и ЕЭС России на 01.01.2019

Всего, МВт

В ЭС

ЕЭС РОССИИ

243 243,2

ОЭС Центра

52 447,3

ОЭС Средней Волги

27 591,8

ОЭС Урала

53 614,3

ОЭС Северо-Запада

24 551,8

23 535,9

ОЭС Сибири

51 861,1

ОЭС Востока

Табл. 4 Коэффициенты использования установленной мощности электростанций по ЕЭС России и отдельным ОЭС в 2017 и 2018 годах, %

В ЭС

В ЭС

ЕЭС России

ОЭС Центра

ОЭС Средней Волги

ОЭС Урала

ОЭС Северо- Запада

ОЭС Сибири

ОЭС Востока

Табл. 5 Изменение показателей установленной мощности электростанций объединенных энергосистем, в том числе ЕЭС России в 2018 году

01.01.2018, МВт

Ввод

Вывод из эксплуатации (демонтаж, длительная консервация)

Перемаркировка

Прочие изменения (уточнение и др.)

На 01.01.2019, МВт

РОССИЯ

246 867,6

250 442,0

ЕЭС РОССИИ

239 812,2

243 243,2

ОЭС Центра

53 077,1

52 447,3

ОЭС Средней Волги

27 203,8

27 591,8

ОЭС Урала

52 714,9

53 614,3

ОЭС Северо-Запада

23 865,2

24 551,8

21 538,5

23 535,9

ОЭС Сибири

51 911,2

51 861,1

ОЭС Востока

Технологически изолированные территориальные энергосистемы:

Электроэнергия вырабатывается на специальных предприятиях – электростанциях, преобразующих в электрическую энергию другие виды энергии: химическую энергию топлива, энергию воды, энергию ветра, атомную энергию и т.д.

Выработанная электростанциями электроэнергия передается по воздушным или кабельным линиям электросетей различным потребителям.

Потребители электроэнергии весьма разнообразны в отношении преобладающих видов приемников энергии, размера и режима потребления энергии, требований к надежности электроснабжения и качеству электроэнергии.

Различают следующие основные группы потребителей энергии:

1.Промышленные предприятия.

2.Строительство.

3.Электрифицированный транспорт.

4.Сельское хозяйство.

5.Бытовые потребители и сфера обслуживания городов и рабочих поселков.

6.Собственные нужды ЭС

Приемниками энергии является асинхронные и синхронные двигатели, электрические печи, электротермические, электролизные и сварочные установки, осветительные и бытовые приборы, кондиционные и холодильные установки, радио- и телеустановки, медицинские и другие специальные установки.

В соответствии с ПУЭ все потребители по степени надежности электроснабжения делятся на три категории:

1. Электроприемники 1 категории – это те, перерыв электроснабжения которых может повлечь за собой: опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса, нарушение функционирования особо важных элементов коммунального хозяйства.

Из состава электроприемников 1 категории выделяется особая группа электроприемников, бесперебойная работа которых необходима для безаварийного останова производства с целью предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования.

2. Электроприемники 2 категории это те, перерыв электроснабжения которых приводит к массовому недоотпуску продукции, массовым простоям рабочих, механизмов и промышленного транспорта, нарушению нормальной деятельности значительного количества городских и сельских жителей.

3. Электроприемники 3 категории – это все остальные приемники.

Электроприемники 1 категории должны обеспечиваться электроэнергией от двух независимых взаимно резервирующих источников энергии, и перерыв их электроснабжения от одного из источников энергии может быть допущен лишь на время автоматического восстановления питания.

Для снабжения особой группы электроприемников 1 категории должен быть предусмотрен третий независимый источник питания. В качестве его, а также в качестве второго независимого источника для остальных электроприемников 1 категории могут быть использованы местные ЭС, ЭС энергосистем, специальные агрегаты бесперебойного питания, аккумуляторные батареи и т.д.

Если резервированием электроснабжения нельзя обеспечить необходимую непрерывность технологического процесса или если резервирование экономически нецелесообразно, то должно быть осуществлено технологическое резервирование, например, установкой взаимное резервирующих технологических агрегатов, специальных устройств безаварийного останова технологического процесса и т.д.

Электроприемники 2 категории рекомендуется обеспечивать энергией от двух независимых взаимно резервирующих источников энергии. Для этих электроприемников при нарушении снабжения от одного источника энергии допустимы перерывы электроснабжения на время, необходимое для включения резервного источника энергии

Допускается питание по одной воздушной линии, в том числе с кабельной вставкой, если обеспечена возможность проведения аварийного ремонта этой линии за время не более 1 суток. Кабельные вставки этой линии должны выполняться двумя кабелями, каждый из которых выбирается по наибольшему продолжительному току воздушной линии. Допускается снабжение по одной кабельной линии, состоящей не менее чем из двух кабелей, присоединенных к одному общему коммутатору.

При наличии централизованного резерва трансформаторов и возможности заменены повредившегося трансформатора за время не более 1 суток допускается электроснабжение приемников 3 категории от одного трансформатора.

Для приемников 3 категории электроснабжение может выполняться от одного источника энергии при условии, что перерывы снабжения, необходимые для ремонта или замены поврежденного элемента системы электроснабжения, не превышают 1 суток.

Минэнерго предлагает ввести принцип «бери или плати» для потребителей электроэнергии, которые используют меньше заявленной мощности

Минэнерго придумало механизм загрузки мощностей, которые находятся в резерве у потребителей, но не используются. Предложения содержатся в проекте постановления правительства, опубликованном в пятницу. Документ уже разослан на межведомственное согласование, замечаний к нему пока нет, говорит представитель Минэнерго.

Сейчас потребители платят только за фактически используемую мощность, и стимулов сокращать резерв у них нет. Тем временем сети вынуждены строить новые подстанции, что становится все труднее в условиях замораживания тарифов. А часть мощностей, которые не используются, все равно приходится обслуживать, и плата за это ложится в тариф для всех потребителей.

Теперь согласно проекту постановления за неиспользуемые мощности придется платить крупным потребителям (мощностью от 670 кВт), в 70 регионах страны они держат в резерве в среднем 58% максимальной мощности подстанций, говорится в материалах Минэнерго. Крупные потребители смогут бесплатно пользоваться резервом, только если в течение года он не превышал 40% максимальной мощности. Если же объем больше, потребителю придется оплатить 20% резервируемой мощности . Для потребителей первой и второй категорий надежности (для них краткосрочный перерыв в электроснабжении может быть опасным для жизни людей или привести к значительным материальным потерям) «бесплатный» резерв увеличен до 60% максимальной мощности. При этом сумма, заплаченная потребителем, не закладывается в необходимую валовую выручку сетевой компании на следующий год, это приведет к снижению тарифа на передачу для остальных потребителей.

Экономический эффект Минэнерго подсчитало на примере Белгородской, Курской и Липецкой областей. В среднем по трем регионам больше 40% мощности не используют 73% потребителей, говорится в презентации министерства (есть у «Ведомостей»). В каждом из регионов им придется дополнительно заплатить в среднем 339 000 руб. (если бы изменения действовали в 2013 г.), а необходимая валовая выручка сетевых компаний снизится в среднем на 3,5%. Как изменятся при этом их доходы — в презентации Минэнерго не говорится .

В случае введения платы за резерв цена на передачу энергии для крупных потребителей вырастет примерно на 5% (+10 коп./кВт ч,), подсчитала аналитик Газпромбанка Наталья Порохова . При этом, по ее словам, ставка платы за резерв в 20% не оттолкнет потребителей от дальнейшего строительства собственной генерации, хотя и увеличит сроки окупаемости таких проектов еще на один год . «Сейчас крупные потребители массово уходят с рынка, предпочитая строить собственные станции. Таким образом они экономят на дорогом тарифе на передачу энергии, но не отсоединяются от сетей, сохраняя на крайний случай резерв», — напоминает аналитик. По ее словам, оплата 40-50% неиспользуемой мощности значительно ухудшила бы экономику строительства собственной генерации, а оплата 100% резерва лишало бы ее смысла . В рамках предложений Минэнерго стоимость собственных электростанций вырастет для потребителей всего на 20 коп./кВт ч, подсчитала Порохова.

Представитель «Россетей» не стал уточнять, согласна ли компания с предложенным проектом. «Документ вывешен на общественное обсуждение, и пока мы направляем Минэнерго замечания и предложения», — говорит он. Но, согласно презентации «Россетей» (есть у «Ведомостей»), компания предлагала в течение пяти лет увеличить долю оплачиваемого резерва до 100%, а также постепенно ввести плату и для других категорий потребителей.

Председатель набсовета НП «Сообщество потребителей энергии» и вице-президент НЛМК по энергетике Александр Старченко не верит в благие намерения «Россетей». «Если холдинг и несет какие-то дополнительные расходы на обслуживание недозагруженных подстанций, то они минимальны, так что плата за резерв приведет только к росту доходов сетевой компании» , — говорит Старченко. По его мнению, вводить экономические стимулы для высвобождения«запертых» мощностей необходимо только в отдельных регионах, где потребители действительно «стоят в очереди» на техприсоединение.

Часть первая.
Тепловая электроэнергетика

Статья опубликована при поддержке компании, помогающей в оформлении различных документов. Ищете предложения, например, "Оформляем удостоверение машиниста мостового крана " или "Помогаем оформить строительные удостоверения (повышение и подтверждение квалификации)"? Тогда загляните на сайт 5854081.ru, и уверены, в списке услуг, предоставляемых компанией, Вы обязательно найдете те, в которых нуждаетесь. Строительные удостоверения оформляются специалистами компании согласно требованиям ОТ и ТБ, при оформлении удостоверения сварщика, монтажника, охраны труда и т.д. выдается сам документ, копия протокола, копия лицензии комбината (при необходимости), оформлявшего аттестацию, а при оформлении удостоверения электромонтера, электромонтажника, ответственного за электрохозяйство, выдается журнал, оформленный на организацию, подававшую заявку. Со списком документов, необходимых для оформления документов, а также с расценками на услуги, оказываемые компанией, можно ознакомиться на сайте 5854081.ru.

Электроэнергетика как отрасль хозяйства объединяет процессы генерирования, передачи, трансформации и потребления электроэнергии. Одна из главных специфических особенностей электроэнергетики состоит в том, что ее продукция в отличие от продукции остальных отраслей промышленности не может накапливаться для последующего использования: производство электроэнергии в каждый момент времени должно соответствовать размерам потребления (с учетом потерь в сетях). Вторая особенность - универсальность электрической энергии: она обладает одинаковыми свойствами независимо от того, каким образом она была произведена - на тепловых, гидравлических, атомных или каких-либо иных электростанциях, и может быть использована любым потребителем. Передача электроэнергии, в отличие от других энергетических ресурсов, осуществляется мгновенно.
Размещение генерирующих мощностей электроэнергетики зависит от двух основных факторов: ресурсного и потребительского. До появления электронного транспорта (линий электропередачи) электроэнергетика ориентировалась главным образом на потребителей, используя привозное топливо. В настоящее время, после постройки сетей высоковольтных ЛЭП и создания единой энергетической системы России (ЕЭС) большее внимание при размещении электростанций уделяется ресурсному фактору.
В 2003 г. в России было произведено 915 млрд кВт·ч электроэнергии, на тепловых электростанциях выработано 68% этого объема (в том числе 42% при сжигании газа, 17% - угля, 8% - мазута), на гидравлических - 18%, на атомных - 15%.
Тепловая энергетика производит свыше 2/3 электроэнергии страны. Среди тепловых электростанций (ТЭС) различают конденсационные электростанции (КЭС) и теплоэлектроцентрали (ТЭЦ). Первые производят только электроэнергию (отработанный в турбинах пар конденсируется обратно в воду и снова поступает в систему), вторые - электроэнергию и тепло (нагретая вода идет к потребителям в жилые дома и на предприятия). ТЭЦ располагаются вблизи крупных городов или в самих городах, так как дальность передачи горячей воды не превышает 15-20 км (потом вода остывает). Например, в Москве и под Москвой существует целая сеть ТЭЦ, некоторые из них имеют мощность более 1 тыс. МВт, то есть больше многих конденсационных ТЭС. Таковы, например, ТЭЦ-22 у Московского нефтеперерабатывающего завода в Капотне, ТЭЦ-26 на юге Москвы (в Бирюлево), ТЭЦ-25 в Очаково (юго-запад), ТЭЦ-23
в Гольяново (северо-восток), ТЭЦ-21 в Коровино (на севере).

Основные потребители электроэнергии в России,
2004 г.

Потребители Доля потребленной
электроэнергии,
%
Доля потребленной
тепловой энергии,
%
Промышленность 48,9 30,8
в том числе топливная 12,0 7,6
черная металлургия 7,1 0,7
цветная металлургия 9,0 2,1
химия и нефтехимия 5,4 8,9
машиностроение
и металлообработка
6,5 4,7
деревообрабатывающая
и целлюлозно-бумажная
1,8 0,9
промышленность
строительных материалов
2,1 0,6
легкая 0,8 0,6
пищевая 1,4 0,5
Сельское хозяйство 3,4 1,2
Транспорт и связь 11,5 1,5
Строительство 0,9 1,0
Жилищно-коммунальное хозяйство 14,0 45,0
Население 8,0 6,0
Прочие отрасли 13,3 14,5

По данным РАО «ЕЭС»

Тепловые энергетические установки в отличие от гидроэлектростанций размещаются относительно свободно и способны вырабатывать электричество без сезонных колебаний, связанных с изменением стока. Их строительство ведется быстрее и связано с меньшими затратами труда и материальных средств. Но электроэнергия, полученная на ТЭС, относительно дорогостоящая. Конкурировать с ГЭС и АЭС могут лишь энергоустановки, использующие газ. Себестоимость электроэнергии, выработанной на угольных и мазутных ТЭС выше в 2-3 раза.

Средняя себестоимость
производства электроэнергии,
коп. за кВт·ч, ноябрь 2004 г.

По данным РАО «ЕЭС»

По характеру обслуживания потребителей тепловые электростанции могут быть районными (ГРЭС), которые имеют большую мощность и обслуживают большую территорию, часто 2-3 субъекта федерации, и центральными (располагаются вблизи потребителя). Первые в большей степени ориентированы на сырьевой фактор размещения, вторые - на потребительский.
ТЭС, использующие уголь, располагаются на территории угольных бассейнов и близ них в условиях, при которых затраты на транспортировку топлива относительно невелики. Примером может служить вторая по мощности в стране Рефтинская ГРЭС под Екатеринбургом, работающая на кузнецком угле. Много подобных установок в пределах Кузбасса (Беловская и Томь-Усинская ГРЭС, Западно-Сибирская и Ново-Кемеровская ТЭЦ), электростанции Канско-Ачинского бассейна (Березовская ГРЭС-1 и Назаровская ГРЭС), Донбасса (Новочеркасская ГРЭС). Единичные ТЭС расположены у небольших угольных залежей: Нерюнгринская ГРЭС в Южно-Якутском бассейне, Троицкая и Южно-Уральская ГРЭС близ угольных бассейнов Челябинской обл., Гусиноозерская ГРЭС у одноименного месторождения на юге Бурятии.

Крупнейшие тепловые электростанции России

Название Размещение Установленная
мощность,
МВт
Основное
топливо
Энерго-
система
1 Сургутская ГРЭС-2 г. Сургут, Ханты-Мансийский
а. о.
4800 Газ ОЭС Урала
2 Рефтинская ГРЭС г. Асбест, Свердловская обл. 3800 Уголь ОЭС Урала
3 Kостромская ГРЭС г. Волгореченск, Kостромская обл. 3600 Газ ОЭС Центра
4 Сургутская ГРЭС-1 г. Сургут, Ханты-Мансийский
а. о.
3280 Газ ОЭС Урала
5 Рязанская ГРЭС г. Новомичуринск, Рязанская обл. 2640 Газ ОЭС Центра
6 Ириклинская ГРЭС пос. Энергетик, Оренбургская обл. 2430 Газ ОЭС Урала
7-10 Заинская ГРЭС г. Заинск,Респ. Татария 2400 Газ ОЭС Средней Волги
7-10 Kонаковская ГРЭС г. Kонаково, Тверская обл. 2400 Газ ОЭС Центра
7-10 Пермская ГРЭС г. Добрянка, Пермская обл. 2400 Газ ОЭС Урала
7-10 Ставропольская ГРЭС пос. Солнечнодольск, Ставропольский край 2400 Газ ОЭС Северного Kавказа
11 Новочеркасская ГРЭС г. Новочеркасск, Ростовская обл. 2112 Уголь ОЭС Северного Kавказа
12 Kиришская ГРЭС г. Kириши, Ленинградская обл. 2100 Мазут ОЭС Северо-Запада

По данным РАО «ЕЭС»

ТЭС, работающие на мазуте, ориентированы на центры нефтепереработки. Типичный пример - Киришская ГРЭС при Киришском НПЗ, обслуживающая Ленинградскую обл. и Санкт-Петербург. Сюда же можно отнести Волжскую ТЭЦ-1 под Волгоградом, Ново-Салаватскую и Стерлитамакскую ТЭЦ в Башкирии.
Газовые ТЭС размещаются как в местах добычи этого сырья (крупнейшие в России Сургутские ГРЭС 1 и 2, Нижневартовская ГРЭС, Заинская ГРЭС в Татарии), так и за многие тысячи километров от нефтегазовых бассейнов. В этом случае топливо поступает на электростанции по трубопроводам. Газ как топливное сырье для ТЭС дешевле и экологичнее мазута и угля, его транспортировка не так сложна, технологически его использовать выгоднее. Работающие на газе электростанции преобладают в Центральной России, на Северном Кавказе, в Поволжье и Приуралье.
Крупнейшее в России средоточие ТЭС - Подмосковье. Здесь имеются два кольца крупных теплоэнергетических установок: внешнее, представленное ГРЭС (Шатурская и Каширская, построенные по плану ГОЭЛРО, а также Конаковская), и внутреннее - московские ТЭЦ. Если рассматривать Москву как единый энергетический узел, то ему не будет равных по величине в нашей стране. Суммарная мощность этих энергоустановок чуть меньше 10 тыс. МВт, что превосходит установленную мощность Сургутских ГРЭС.
Ныне основная часть подмосковных ТЭЦ работает на газе, хотя некоторые из них строились под иное топливо: уголь (Кашира) или торф (Шатура). Руководство Шатурской ГРЭС уже в ближайшее время намерено снова вернуться к лежащему буквально у ног мещерскому торфу как основному энергоносителю, резервными источниками останется газ и станет кузнецкий уголь (сжигать подмосковный уголь на Шатурской ГРЭС стало нерентабельно).

Вспоминаем

● Какие виды природных ресурсов используют на электростанциях для выработки электроэнергии? ● Как называют электростанции в зависимости от видов используемой энергии?

Ключевые слова

Электроэнергетика; тепловые электростанции; гидроэлектростанции; атомные.

1. Понятие об электроэнергетике. Электроэнергетика - это отрасль тяжелой промышленности, которая объединяет производство электроэнергии на электростанциях разных типов и передачу ее потребителям. Электроэнергию нельзя накапливать, но зато её можно передавать на большие расстояния. Использовать её могут любые потребители: промышленность, население, жилищно-коммунальное хозяйство, транспорт, связь, к тому же это самый современный и экологически безопасный вид использования энергии. Самый крупный потребитель электроэнергии в хозяйстве - это промышленность. Около 80 % всей вырабатываемой электроэнергии приходится на высокоразвитые страны (США, Японию, ФРГ). В последние десятилетия наиболее динамично развивается электроэнергетика в Китае, Индии.

Для производства электрической энергии наиболее широко используются пять основных источников энергии - уголь, нефть, природный газ, гидроэнергия (энергия воды) и атомная энергия. Пока незначительную роль играют нетрадиционные энергоресурсы (энергия ветра, энергия морских приливов, солнечная энергия). Для большей части человечества живущего в странах Африки и в странах расположенных на юго-восточной Азии, древесина по-прежнему служит основным источником энергии.

В зависимости от видов природных ресурсов, используемых для получения электроэнергии, выделяют разные типы электростанций (рис. 123, 124). Электростанции различных типов объединяются линиями электропередач и образуют энергетическую систему страны или региона.

2. Тепловые электростанции. Большую часть электроэнергии в мире дают тепловые электростанции (ТЭС) , работающие на угле, мазуте или газе (рис. 125). Этот вид электростанций отличается надежностью, постоянством производства энергии, не зависящим от времени года. Тепло, выделяемое при сжигании горючих ископаемых, преобразуется на ТЭС в электроэнергию, поэтому их строят в районах добычи топлива, вблизи транспортных магистралей (железнодорожных линий) или портов. Поскольку ТЭС для охлаждения необходимо большое количество воды, их строят рядом с крупными реками, озерами или морями.

К тепловым электростанциям относятся и теплоэлектроцентрали (ТЭЦ), которые одновременно с электроэнергией производят пар и горячую воду для нужд предприятий и населения. Они размещаются в непосредственной близости от потребителей пара и горячей воды, поскольку тепло и горячую воду можно передавать на небольшое расстояние (10-15 км).

3. Гидроэлектростанции. Второе место по производству электроэнергии занимают гидроэлектростанции (ГЭС) (рис. 126).

Энергия падающей воды (гидроэнергия) преобразуется на ГЭС в электроэнергию (рис. 127). Первая ГЭС была построена в 1882 г. В настоящее время ГЭС вырабатывают около 20 % потребляемой в мире электроэнергии. Они являются весьма эффективными источниками энергии, поскольку используют возобновляемые ресурсы. Однако получать большую долю энергии таким способом могут лишь страны, обладающие огромными гидроресурсами (многоводными горными реками).

Самыми крупными ГЭС являются китайская «Санься» («Три ущелья») на реке Янцзы, бразильско-парагвайская «Итайпу» на реке Парана, венесуэльская «Гури» на реке Карони, «Гранд-кули» в США на реке Колумбия, Красноярская (Россия) на реке Енисей.

4. Атомные электростанции. Атомные электростанции (АЭС) имеют большое преимущество по сравнению с тепловыми. Их можно строить там, где нужна энергия, но недостаточно топливных ресурсов (из 1 кг ядерного горючего можно получить столько же энергии, сколько при сжигании 3000 т угля или 1500 т нефти) (рис. 128, 129, 130). При нормальной работе они не дают выбросов в атмосферу в отличие от промышленности и тепловых электростанций. Велика доля АЭС в производстве электроэнергии в США, Франции, Японии. К примеру, атомные электростанции во Франции дают более 75% всей электроэнергии.

В Японии расположен крупнейший в мире атомно-энергетический комплекс Фукусима на о. Хонсю. АЭС в этой стране вырабатывают более 30% электроэнергии. После аварии на Чернобыльской АЭС некоторые страны приостановили развитие атомной энергетики (Италия, Австрия).