Теория вероятности егэ профильный уровень. Решение задач по теории вероятностей в егэ

Случайное событие – любое событие, которое может произойти, а может и не произойти в результате какого-либо опыта.

Вероятность события р равна отношению числа благоприятных исходов k к числу всевозможных исходов n , т.е.

p=\frac{k}{n}

Формулы сложения и умножения теории вероятности

Событие \bar{A} называется противоположным событию A, если не произошло событие A.

Сумма вероятностей противоположных событий равна единице, т.е.

P(\bar{A}) + P(A) =1

  • Вероятность события не может быть больше 1.
  • Если вероятность события равна 0, то оно не случится.
  • Если вероятность события равна 1, то оно произойдет.

Теорема сложения вероятностей:

«Вероятность суммы двух несовместимых событий равна сумме вероятностей этих событий.»

P(A+B) = P(A) + P(B)

Вероятность суммы двух совместных событий равна сумме вероятностей этих событий без учета их совместного появления:

P(A+B) = P(A) + P(B) - P(AB)

Теорема умножения вероятностей

«Вероятность произведения двух событий равна произведению вероятностей одного из них на условную вероятность другого, вычисленную при условии, что первое имело место.»

P(AB)=P(A)*P(B)

События называются несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

События называются совместными , если наступление одного из них не исключает наступления другого.

Два случайных события А и В называются независимыми , если наступление одного из них не изменяет вероятность наступления другого. В противном случае события А и В называют зависимыми.

Повторение курса теории вероятностей в 11 классе. Подготовка к ЕГЭ.

    Суммой A + B событий A и B называется событие, состоящее в появлении события А , или события В , или обоих этих событий.

Пример. Пусть А - идет дождь, B - идет снег, тогда (А + В) - либо дождь, либо снег, либо дождь со снегом, т. е. осадки;

А - пошли на дискотеку; B - пошли в библиотеку, тогда (А + В) - пошли либо на дискотеку, либо в библиотеку, т. е. вышли из дома.

    События называются несовместными , если появление одного из них исключает появление других. То есть, может произойти только одно определённое событие, либо другое.

Например, бросая игральную кость, можно выделить такие события, как выпадение четного числа очков и выпадение нечетного числа очков. Эти события несовместны.

    Теорема сложения вероятностей несовместных событий

Теорема . Вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

P (A + B) = P(A) + P(B) .

Пример. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.

Решение . Появление цветного шара означает появление либо красного, либо синего шара.

Вероятность появления красного шара (событие А)

P (A) = 10/30 = 1/3.

Вероятность появления синего шара (событие В)

P (В) = 5/30 = 1/6.

События А и В несовместны (появление шара одного цвета исключает появление шара другого цвета), поэтому теорема сложения применима.

По формуле искомая вероятность

P (A + B) = P(A) + P(B) = 1/3 + 1/6 = 1/2 .

Пример. Вероятность выпадения 5 или 6 очков на игральном кубике при одном броске будет 1/3 , потому что оба события (выпадение 5, выпадение 6) несовместны и вероятность реализации одного или второго события вычисляется следующим образом: 1/6 + 1/6 =1/3.

    Полная группа событий.

Множество несовместных событий образуют полную группу событий , если в результате отдельно взятого испытания обязательно появится одно из этих событий.

Приммер. Для игрального кубика характерно рассмотрение следующего набора:

в результате броска игрального кубика выпадет 1 очко;
– … 2 очка;
– … 3 очка;
– … 4 очка;
– … 5 очков;
– … 6 очков.

События несовместны (поскольку появление какой-либо грани исключает одновременное появление других) и образуют полную группу (так как в результате испытания непременно появится одно из этих шести событий) .

Теорема . Сумма вероятностей событий A 1 , A 2 , …, A n , образующих полную группу, равна единице:

P(А 1 ) + P(А 2 ) + ... + P(А n ) = 1 .

    Противоположные события.

Противоположными называют два единственно возможных события, образующих полную группу. Если одно из двух противоположных событий обозначено через А , то другое принято обозначать .

Пример. Если при бросании кости событие А состоит в выпадении 6 , то противоположное событие – это невыпадение 6 , т.е. выпадение 1, 2, 3, 4 или 5 .

Пример. Если А - число четное, то - число нечетное; если А - зима, то - не зима (либо осень, либо лето, либо весна); если А - сдал экзамен, то - не сдал экзамен.

Теорема. Сумма вероятностей противоположных событий равна единице.

Р(А) + Р( ) = 1 или Р(А) = 1 – Р( ).

Пример. Какова вероятность того, что при бросании двух игральных костей на них выпадает разное (не одинаковое) число очков?

Обозначим описанное событие А. Противоположным событием является событие , состоящее в том, что на обеих костях выпало одинаковое число очков. Событию благоприятствуют шесть элементарных событий: (1;1), (2;2), (3;3), (4;4), (5;5), (6;6). Вероятность каждого из этих элементарных событий . Значит, Р( ) = . Тогда Р(А) = 1 – Р( )= 1 - .

    Зависимые и независимые события. Условная вероятность.

Два события А и В называются независимыми , если вероятность появления каждого из них не зависит от того, появилось другое событие или нет.

Пример. Монета брошена два раза. Событие А – выпал «герб» при первом броске, событие В – выпал «герб» при втором броске. События А и В независимы.

События А и В называются зависимыми , если вероятность наступления одного из них зависит от того, произошло или нет другое событие.

Если вероятность события В вычисляется в предположении, что событие А уже произошло, то такая вероятность называется условной вероятностью события В по отношению к событию А. Обозначение: Р А (В).

Пример. В конверте лежало 4 открытки с видами Петербурга и 3 открытки с видами Москвы. Пусть событие А – извлечение открытки с видами Петербурга, событие В – извлечение открытки с видами Москвы. Рассмотрим вероятности. Связанные с этими событиями.

а) если сначала вытащили открытку с видом Петербурга, а затем с видом Москвы, то Р А (В) = ;

б) если сначала вытащили открытку с видом Москвы, а затем с видом Петербурга, тогда Р В (А) = .

    Произведение вероятностей.

Произведением двух событий А и В называют событие АВ , состоящее в совместном появлении (совмещении) этих событий.

Пример. Пусть А - из урны вытянули белый шар, B - из урны вытянули белый шар, тогда АВ - из урны вытянули два белых шара; если А - идет дождь, B - идет снег, то АB - дождь со снегом; А - число четное, B - число кратное 3 , тогда АB - число кратное 6 .

Теорема умножения для независимых событий

Теорема . Вероятность произведения двух независимых событий А и В равна произведению их вероятностей :

P(AB) = P(A) · P(B) .

Пример. Игральный куб подбрасывают два раза. Какова вероятность, что в первом броске выпадет 2 очка, а во втором 6?

Пусть событи е А – выпадение 2 очков, событие В – выпадение 6 очков, событие С – выпадение в первом броске 2 очков, а во втором 6 очков.

События А и В независимы, так как наступление одного события не зависит от наступления другого события. Тогда так как Р(А) = и Р(В) = , то Р(С) = Р(А) · Р(В) = .

Теорема умножения для зависимых событий.

Теорема . Если события А и В являются зависимыми, то вероятность их произведения равна произведению вероятности одного из них на условную вероятность другого

P (AB) = P (A) · P A (B) .

Пример. В конверте лежало 4 открытки с видами Петербурга и 3 открытки с видами Москвы. Пусть событие А – извлечение первый раз видов Петербурга, событие В - извлечение первый раз видов Москвы. Пусть событие С состоит в том, что вначале вытащили вид Петербурга, затем вид Москвы. Тогда событие С по определению умножения равно А·В. Очевидно, что в данном случае события А и В зависимы. Покажем это.

Значит нужно воспользоваться теоремой о формуле произведения зависимых событий, т.е. Р(С) = P (A) · P A (B) . Таким образом, Р(С) = .

Пример . В читальном зале имеется 6 учебников по информатике, из которых три в переплете. Библиотекарь наудачу взял два учебника. Найти вероятность того, что оба учебника окажутся в переплете.

Решение . Рассмотрим следующие события:
А 1 - первый взятый учебник в переплете;
A 2 - второй взятый учебник в переплете.

Событие A = A 1 · A 2 , состоит в том, что оба взятых учебника в переплете. События А 1 и А 2 являются зависимыми, так как вероятность наступления события А 2 зависит от наступления события А 1 . Поэтому, для вычисления вероятности воспользуемся формулой произведения зависимых событий .

Вероятность наступления события А 1 в соответствии с классическим определением вероятности:

P (А 1 ) = m / n = 3/6 = 0,5 .

P А1 2 ) определяется как условная вероятность наступления события А 2 при условии, что событие А 1 уже наступило:

P А1 2 ) = 2/5 = 0,4 .

Тогда искомая вероятность наступления события А :

P (А) = 0,5 · 0,4 = 0,2 .

    Теорема сложения вероятностей совместных событий

Два события называются совместными , если появление одного из них не исключает появления другого в одном и том же испытании.

Пример. А - появление четырех очков при бросании игральной кости; В - появление четного числа очков. Событие А и В - совместны.

Теорема . Вероятность появления хотя бы одного из двух совместных событий А и В равна сумме вероятностей этих событий без вероятности их совместного появления :

P (A + B) = P (A) + P (B) - P (AB) .

Пример. Два студента читают книгу. Первый студент дочитает книгу с вероятностью – 0,6; второй – 0,8. Найти вероятность того, что книга будет прочитана хотя бы одним из студентов.

Решение . Вероятность того, что книга будет прочитана каждым из студентов не зависит от результата отдельно взятого студента, поэтому события А (первый студент дочитал книгу) и B (второй студент дочитал книгу) независимы и совместны. Искомую вероятность находим по формуле сложения вероятностей совместных событий.

Вероятность события АB (оба студента дочитали книгу):

P (AB) = P (A) · P (B) = 0,6 · 0,8 = 0,48.

Тогда

P (A + B) = 0,6 + 0,8 - 0,48 = 0,92.

Пример. В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдем вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов (то есть или в одном, или в другом, или в обоих сразу).

Вероятность первого события «кофе закончится в первом автомате» также как и вероятность второго события «кофе закончится во втором автомате» по условию равна 0,3. События являются совместными.

Вероятность совместной реализации первых двух событий по условию равна 0,12.

Значит, вероятность того, что к концу дня кофе закончится хотя бы в одном из автоматов есть 0,3 + 0,3 – 0,12 = 0,48.

Пример. В школе 1400 учеников, из них 1200 учеников умеют кататься на лыжах, 952 ученика умеют кататься на коньках. Не умеют кататься ни на лыжах, ни на коньках 60 учеников. Какова вероятность, что ученик умеет кататься и на лыжах, и на коньках?

Обозначим Е – все ученики данной школы. Пусть событие А – умение учеников кататься на лыжах. Событие В – умение учеников кататься на коньках. Событие АВ – умение учеников кататься и на лыжах и на коньках. Событие А+В – умение учеников кататься или на лыжах, или на коньках. .

    Формула полной вероятности.

Если событие А может произойти только при выполнении одного из событий В 1 , В 2 , …, В n которые образуют полную группу несовместных событий, то вероятность события А вычисляется по формуле

Р(А) = Р(В 1 ) · Р В1 (А) + Р(В 2 ) · Р В2 (А) + … + Р(В n ) · Р В n (А).

Эта формула называется формулой полной вероятности. 3 ) = .

Пусть событие А состоит в том, что выбранная лампа оказалась бракованной; Р В1 (А) означает событие, состоящее в том, что выбрана бракованная лампа из ламп, произведенных на первом заводе , Р(В 2 ) – на втором заводе, Р(В 3 ) – на третьем заводе. Из условия задачи следует:

Р В1 =0,034.

Список литературы.

    Тюрин Ю.Н., Макаров А.А., Высоцкий И.Р., Ященко И.В. Теория вероятностей и статистика. ОАО «Московский учебник». М., 2008.

    Шахмейстер А.Х. Комбинаторика. Статистика. Вероятность. МЦНМО. М., 2010.

ЕГЭ 2016. Математика. Теория вероятностей. Рабочая тетрадь.

М.: 2016. - 64 с.

Рабочая тетрадь по математике серии «ЕГЭ 2016. Математика» ориентирована на подготовку учащихся старшей школы к успешной сдаче единого государственного экзамена по математике в 2016 году по базовому и профильному уровням. В рабочей тетради представлены задачи по одной позиции контрольных измерительных материалов ЕГЭ-2016. На различных этапах обучения пособие поможет обеспечить уровневый подход к организации повторения, осуществить контроль и самоконтроль знаний по теме «Теория вероятностей». Рабочая тетрадь ориентирована на один учебный год, однако при необходимости позволит в кратчайшие сроки восполнить пробелы в знаниях выпускника. Тетрадь предназначена для учащихся старшей школы, учителей математики, родителей.

Формат: pdf

Размер: 3,1 Мб

Смотреть, скачать: drive.google

СОДЕРЖАНИЕ
От редактора серии 3
Введение 4
Диагностическая работа 1 6
Решения задач диагностической работы 1 10
Тренировочная работа 1 (к задаче Д1.1) 22
Тренировочная работа 2 (к задачам Д1.2, Д.1.4) 24
Тренировочная работа 3 (к задачам Д1.3, Д1.5) 26
Тренировочная работа 4 (к задачам Д1.1-Д1.5) 28
Тренировочная работа 5 (к задачам Д1.6-Д1.9) 30
Тренировочная работа 6 (к задачам Д1.6-Д1.9) 32
Тренировочная работа 7 (к задачам Д1.6-Д1.9) 34
Тренировочная работа 8 (к задачам Д1.10-Д1.14) 36
Тренировочная работа 9 (к задачам Д1.10-Д1.14) 39
Тренировочная работа 10 (к задачам Д1.10-Д1.14) 41
Тренировочная работа 11 (к задачам Д1.15-Д.18) 43
Тренировочная работа 12 (к задачам Д1.15-Д.18) 45
Диагностическая работа 2 47
Диагностическая работа 3 51
Диагностическая работа 4 54
Справочные материалы 57
Ответы 58

Настоящее пособие предназначено для подготовки к выполнению задания по теории вероятностей единого государственного экзамена (задача 4 профильного уровня и задача 10 базового уровня в варианте 2016 года).
Пособие состоит из диагностической работы Д1 с разбором решений, десяти тренировочных работ и трех дополнительных диагностических работ Д2-Д4, предназначенных для промежуточного контроля. В конце сборника даны ответы ко всем задачам.
Благодаря тому что задания первой части ЕГЭ по математике формируются с использованием открытого банка, задачи по вероятности также не будут сюрпризом для участников экзамена.
Теория вероятностей - один из наиболее важных прикладных разделов математики. Многие явления окружающего нас мира поддаются описанию только с помощью теории вероятностей. Ее преподают в школах многих стран, а в России она была возвращена в школу стандартом 2004 года и пока остается новым разделом.
Учащиеся и учителя еще испытывают определенные трудности при изучении теории вероятностей и статистики, связанные с отсутствием глубоких традиций преподавания и малочисленностью учебных материалов. Поэтому в 2016 году в ЕГЭ войдут только простейшие задачи по теории вероятностей.

В-6-2014 (все 56 прототипов из банка ЕГЭ)

Уметь строить и исследовать простейшие математические модели (теория вероятностей)

1.В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых. Решение: Количество исходов, при которых в результате броска игральных костей выпадет 8 очков, равно 5: 2+6, 3+5, 4+4, 5+3, 6+2. Каждый из кубиков может выпасть шестью вариантами, поэтому общее число исходов равно 6·6 = 36. Следовательно, вероятность того, что в сумме выпадет 8 очков, равна 5: 36=0,138…=0,14

2.В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что орел выпадет ровно один раз. Решeние: Равновозможны 4 исхода эксперимента: орел-орел, орел-решка, решка-орел, решка-решка. Орел выпадает ровно один раз в двух случаях: орел-решка и решка-орел. Поэтому вероятность того, что орел выпадет ровно 1 раз, равна 2: 4= 0,5.

3.В чемпионате по гимнастике участвуют 20 спортсменок: 8 из России, 7 из США, остальные - из Китая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая. Решeние: В чемпионате принимает участие спортсменок из Китая. Тогда вероятность того, что спортсменка, выступающая первой, окажется из Китая, равна 5: 20 = 0,25

4.В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает. Решeние: В среднем из 1000 садовых насосов, поступивших в продажу, 1000 − 5 = 995 не подтекают. Значит, вероятность того, что один случайно выбранный для контроля насос не подтекает, равна 995: 1000 =0,995

5.Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых. Решeние: По условию на каждые 100 + 8 = 108 сумок приходится 100 качественных сумок. Значит, вероятность того, что купленная сумка окажется качественной, равна 100: 108 =0,925925…= 0,93

6.В соревнованиях по толканию ядра участвуют 4 спортсмена из Финляндии, 7 спортсменов из Дании, 9 спортсменов из Швеции и 5 - из Норвегии. Порядок, в котором выступают спортсмены, определяется жребием. Найдите вероятность того, что спортсмен, выступающий последним, окажется из Швеции . Решeние : Всего в соревнованиях принимает участие 4 + 7 + 9 + 5 = 25 спортсменов. Значит, вероятность того, что спортсмен, который выступает последним, окажется из Швеции, равна 9: 25 =0,36

7.Научная конференция проводится в 5 дней. Всего запланировано 75 докладов - первые три дня по 17 докладов, остальные распределены поровну между четвертым и пятым днями. Порядок докладов определяется жеребьёвкой. Какова вероятность, что доклад профессора М. окажется запланированным на последний день конференции? Решeние: За первые три дня будет прочитан 51 доклад, на последние два дня планируется 24 доклада. Поэтому на последний день запланировано 12 докладов. Значит, вероятность того, что доклад профессора М. окажется запланированным на последний день конференции, равна 12: 75 =0,16

8.Конкурс исполнителей проводится в 5 дней. Всего заявлено 80 выступлений - по одному от каждой страны. В первый день 8 выступлений, остальные распределены поровну между оставшимися днями. Порядок выступлений определяется жеребьёвкой. Какова вероятность, что выступление представителя России состоится в третий день конкурса? Решeние: На третий день запланировано выступлений. Значит, вероятность того, что выступление представителя из России окажется запланированным на третий день конкурса, равна 18: 80 =0,225

9.На семинар приехали 3 ученых из Норвегии, 3 из России и 4 из Испании. Порядок докладов определяется жеребьёвкой. Найдите вероятность того, что восьмым окажется доклад ученого из России. Решeние: Всего в семинаре принимает участие 3 + 3 + 4 = 10 ученых, значит, вероятность того, что ученый, который выступает восьмым, окажется из России, равна 3:10 = 0,3.

10.Перед началом первого тура чемпионата по бадминтону участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 26 бадминтонистов, среди которых 10 участников из России, в том числе Руслан Орлов. Найдите вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России? Решeние: В первом туре Руслан Орлов может сыграть с 26 − 1 = 25 бадминтонистами, из которых 10 − 1 = 9 из России. Значит, вероятность того, что в первом туре Руслан Орлов будет играть с каким-либо бадминтонистом из России, равна 9: 25 = 0,36

11.В сборнике билетов по биологии всего 55 билетов, в 11 из них встречается вопрос по ботанике. Найдите вероятность того, что в случайно выбранном на экзамене билете школьнику достанется вопрос по ботанике. Решение: 11: 55 = 0,2

12.На чемпионате по прыжкам в воду выступают 25 спортсменов, среди них 8 прыгунов из России и 9 прыгунов из Парагвая. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что шестым будет выступать прыгун из Парагвая.

13.Две фабрики выпускают одинаковые стекла для автомобильных фар. Первая фабрика выпускает 30% этих стекол, вторая - 70%. Первая фабрика выпускает 3% бракованных стекол, а вторая - 4%. Найдите вероятность того, что случайно купленное в магазине стекло, окажется бракованным.

Решение. Переводим %% в дроби.

Событие А - "Куплены стекла первой фабрики". Р(А)=0,3

Событие В - "Куплены стекла второй фабрики". Р(В)=0,7

Событие Х - " Стекла бракованные".

Р(А и Х) = 0.3*0.03=0.009

Р(В и Х) = 0.7*0.04=0.028 По формуле полной вероятности:Р = 0.009+0.028 = 0.037

14.Если гроссмейстер А. играет белыми, то он выигрывает у гроссмейстера Б. с вероятностью 0,52. Если А. играет черными, то А. выигрывает у Б. с вероятностью 0,3. Гроссмейстеры А. и Б. играют две партии, причем во второй партии меняют цвет фигур. Найдите вероятность того, что А. выиграет оба раза. Решение: 0,52 * 0,3 = 0,156.

15.Вася, Петя, Коля и Лёша бросили жребий - кому начинать игру. Найдите вероятность того, что начинать игру должен будет Петя.

Решение: Случайный эксперимент - бросание жребия.
В этом эксперименте элементарным событием является участник, который выиграл жребий.
Перечислим возможные элементарные события:
(Вася), (Петя), (Коля), (Лёша).
Их будет будет 4, т.е. N=4. Жребий подразумевает, что все элементарные события равновозможны.
Событию A= {жребий выиграл Петя} благоприятствует только одно элементарное событие (Петя). Поэтому N(A)=1.
Тогда P(A)=0,25 Ответ: 0,25.

16.В чемпионате мира участвуют 16 команд. С помощью жребия их нужно разделить на четыре группы по четыре команды в каждой. В ящике вперемешку лежат карточки с номерами групп: 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4. Капитаны команд тянут по одной карточке. Какова вероятность того, что команда России окажется во второй группе? Решение: Всего исходов -16.Из них благоприятных, т.е. с номером 2, будет 4. Значит, 4: 16=0,25

17.На экзамене по геометрии школьнику достаётся один вопрос из списка экзаменационных вопросов. Вероятность того, что это вопрос на тему «Вписанная окружность», равна 0,2. Вероятность того, что это вопрос на тему «Параллелограмм», равна 0,15. Вопросов, которые одновременно относятся к этим двум темам, нет. Найдите вероятность того, что на экзамене школьнику достанется вопрос по одной из этих двух тем.

= {вопрос на тему «Вписанная окружность»},
= {вопрос на тему «Параллелограмм»}.
События
и несовместны, так как по условию в списке нет вопросов, относящихся к этим двум темам одновременно.
Событие
= {вопрос по одной из этих двух тем} является их объединением: .
Применим формулу сложения вероятностей несовместных событий:
.

18.В торговом центре два одинаковых автомата продают кофе. Вероятность того, что к концу дня в автомате закончится кофе, равна 0,3. Вероятность того, что кофе закончится в обоих автоматах, равна 0,12. Найдите вероятность того, что к концу дня кофе останется в обоих автоматах.

Определим события
= {кофе закончится в первом автомате},
= {кофе закончится во втором автомате}.
По условию задачи
и .
По формуле сложения вероятностей найдем вероятность события
и = {кофе закончится хотя бы в одном из автоматов}:

.
Следовательно, вероятность противоположного события {кофе останется в обоих автоматах} равна
.

19.Биатлонист пять раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые три раза попал в мишени, а последние два промахнулся. Результат округлите до сотых.

В этой задаче предполагается, что результат каждого следующего выстрела не зависит от предыдущих. Поэтому события «попал при первом выстреле», «попал при втором выстреле» и т.д. независимы.
Вероятность каждого попадания равна . Значит, вероятность каждого промаха равна . Воспользуемся формулой умножения вероятностей независимых событий. Получаем, что последовательность
= {попал, попал, попал, промахнулся, промахнулся} имеет вероятность
=
= . Ответ: .

20.В магазине стоят два платёжных автомата. Каждый из них может быть неисправен с вероятностью 0,05 независимо от другого автомата. Найдите вероятность того, что хотя бы один автомат исправен.

В этой задаче также предполагается независимость работы автоматов.
Найдем вероятность противоположного события
= {оба автомата неисправны}.
Для этого используем формулу умножения вероятностей независимых событий:
.
Значит, вероятность события
= {хотя бы один автомат исправен} равна . Ответ: .

21.Помещение освещается фонарём с двумя лампами. Вероятность перегорания одной лампы в течение года равна 0,3. Найдите вероятность того, что в течение года хотя бы одна лампа не перегорит. Решение: Обе перегорят (события независимые и пользуемся формулой произведения вероятностей) с вероятностью p1=0,3⋅0,3=0,09
Противоположное событие (НЕ обе перегорят = ОДНА хотя бы не перегорит)
произойдет с вероятностью p=1-p1=1-0,09=0,91
ОТВЕТ: 0,91

22.Вероятность того, что новый электрический чайник прослужит больше года, равна 0,97. Вероятность того, что он прослужит больше двух лет, равна 0,89. Найдите вероятность того, что он прослужит меньше двух лет, но больше года

Решение.

Пусть A = «чайник прослужит больше года, но меньше двух лет», В = «чайник прослужит больше двух лет», тогда A + B = «чайник прослужит больше года».

События A и В совместные, вероятность их суммы равна сумме вероятностей этих событий, уменьшенной на вероятность их произведения. Вероятность произведения этих событий, состоящего в том, что чайник выйдет из строя ровно через два года - строго в тот же день, час и секунду - равна нулю. Тогда:

P(A + B) = P(A) + P(B) − P(A·B) = P(A) + P(B),

откуда, используя данные из условия, получаем 0,97 = P(A) + 0,89.

Тем самым, для искомой вероятности имеем: P(A) = 0,97 − 0,89 = 0,08.

23.Агрофирма закупает куриные яйца в двух домашних хозяйствах. 40% яиц из первого хозяйства - яйца высшей категории, а из второго хозяйства - 20% яиц высшей категории. Всего высшую категорию получает 35% яиц. Найдите вероятность того, что яйцо, купленное у этой агрофирмы, окажется из первого хозяйства. Решение: Пусть в первом хозяйстве агрофирма закупает яиц, в том числе, яиц высшей категории, а во втором хозяйстве - яиц, в том числе яиц высшей категории. Тем самым, всего агроформа закупает яиц, в том числе яиц высшей категории. По условию, высшую категорию имеют 35% яиц, тогда:

Поэтому вероятность того, что купленное яйцо окажется из первого хозяйства равна =0,75

24.На клавиатуре телефона 10 цифр, от 0 до 9. Какова вероятность того, что случайно нажатая цифра будет чётной?

25.Какова вероятность того, что случайно выбранное натуральное число от 10 до 19 делится на три?

26.Ковбой Джон попадает в муху на стене с вероятностью 0,9, если стреляет из пристрелянного револьвера. Если Джон стреляет из непристрелянного револьвера, то он попадает в муху с вероятностью 0,2. На столе лежит 10 револьверов, из них только 4 пристрелянные. Ковбой Джон видит на стене муху, наудачу хватает первый попавшийся револьвер и стреляет в муху. Найдите вероятность того, что Джон промахнётся . Решение: Джон попадает в муху, если схватит пристрелянный револьвер и попадет из него, или если схватит непристрелянный револьвер и попадает из него. По формуле условной вероятности, вероятности этих событий равны соответственно 0,4·0,9 = 0,36 и 0,6·0,2 = 0,12. Эти события несовместны, вероятность их суммы равна сумме вероятностей этих событий: 0,36 + 0,12 = 0,48. Событие, состоящее в том, что Джон промахнется, противоположное. Его вероятность равна 1 − 0,48 = 0,52.

27.В группе туристов 5 человек. С помощью жребия они выбирают двух человек, которые должны идти в село за продуктами. Турист А. хотел бы сходить в магазин, но он подчиняется жребию. Какова вероятность того, что А. пойдёт в магазин? Решение: Всего туристов пять, случайным образом из них выбирают двоих. Вероятность быть выбранным равна 2: 5 = 0,4. Ответ: 0,4.

28.Перед началом футбольного матча судья бросает монетку, чтобы определить, какая из команд начнёт игру с мячом. Команда «Физик» играет три матча с разными командами. Найдите вероятность того, что в этих играх «Физик» выиграет жребий ровно два раза. Решeние: Обозначим «1» ту сторону монеты, которая отвечает за выигрыш жребия «Физиком», другую сторону монеты обозначим «0». Тогда благоприятных комбинаций три: 110, 101, 011, а всего комбинаций 2 3 = 8: 000, 001, 010, 011, 100, 101, 110, 111. Тем самым, искомая вероятность равна:

29.Игральный кубик бросают дважды. Сколько элементарных исходов опыта благоприятствуют событию «А = сумма очков равна 5»? Решeние: Сумма очков может быть равна 5 в четырех случаях: «3 + 2», «2 + 3», «1 + 4», «4 + 1». Ответ: 4.

30.В случайном эксперименте симметричную монету бросают дважды. Найдите вероятность того, что наступит исход ОР (в первый раз выпадает орёл, во второй - решка). Решение: Всего возможных исходов - четыре: орел-орел, орел-решка, решка-орел, решка-решка. Благоприятным является один: орел-решка. Следовательно, искомая вероятность равна 1: 4 = 0,25. Ответ: 0,25.

31.На рок-фестивале выступают группы - по одной от каждой из заявленных стран. Порядок выступления определяется жребием. Какова вероятность того, что группа из Дании будет выступать после группы из Швеции и после группы из Норвегии? Результат округлите до сотых. Решение: Общее количество выступающих на фестивале групп для ответа на вопрос неважно. Сколько бы их ни было, для указанных стран есть 6 способов взаимного расположения среди выступающих (Д - Дания, Ш - Швеция, Н - Норвегия):

Д...Ш...Н..., ...Д...Н...Ш..., ...Ш...Н...Д..., ...Ш...Д...Н..., ...Н...Д...Ш..., ...Н...Ш...Д...

Дания находится после Швеции и Норвегии в двух случаях. Поэтому вероятность того, что группы случайным образом будут распределены именно так, равна Ответ: 0,33.

32.При артиллерийской стрельбе автоматическая система делает выстрел по цели. Если цель не уничтожена, то система делает повторный выстрел. Выстрелы повторяются до тех пор, пока цель не будет уничтожена. Вероятность уничтожения некоторой цели при первом выстреле равна 0,4, а при каждом последующем - 0,6. Сколько выстрелов потребуется для того, чтобы вероятность уничтожения цели была не менее 0,98? Решение: Можно решать задачу «по действиям», вычисляя вероятность уцелеть после ряда последовательных промахов:Р(1) = 0,6. Р(2) = Р(1)·0,4 = 0,24. Р(3) = Р(2)·0,4 = 0,096. Р(4) = Р(3)·0,4 = 0,0384; Р(5) = Р(4)·0,4 = 0,01536. Последняя вероятность меньше 0,02, поэтому достаточно пяти выстрелов по мишени.

33.Чтобы пройти в следующий круг соревнований, футбольной команде нужно набрать хотя бы 4 очка в двух играх. Если команда выигрывает, она получает 3 очка, в случае ничьей - 1 очко, если проигрывает - 0 очков. Найдите вероятность того, что команде удастся выйти в следующий круг соревнований. Считайте, что в каждой игре вероятности выигрыша и проигрыша одинаковы и равны 0,4 . Решение : Команда может получить не меньше 4 очков в двух играх тремя способами: 3+1, 1+3, 3+3. Эти события несовместны, вероятность их суммы равна сумме их вероятностей. Каждое из этих событий представляет собой произведение двух независимых событий - результата в первой и во второй игре. Отсюда имеем:

34.В некотором городе из 5000 появившихся на свет младенцев 2512 мальчиков. Найдите частоту рождения девочек в этом городе. Результат округлите до тысячных. Решение: 5000 – 2512 = 2488; 2488: 5000 = 0,4976 ≈0,498

35.На борту самолёта 12 мест рядом с запасными выходами и 18 мест за перегородками, разделяющими салоны. Остальные места неудобны для пассажира высокого роста. Пассажир В. высокого роста. Найдите вероятность того, что на регистрации при случайном выборе места пассажиру В. достанется удобное место, если всего в самолёте 300 мест. Решение : В самолете 12 + 18 = 30 мест удобны пассажиру В., а всего в самолете 300 мест. Поэтому вероятность того, что пассажиру В. достанется удобное место равна 30: 300 = 0,1.Ответ: 0,1.

36.На олимпиаде в вузе участников рассаживают по трём аудиториям. В первых двух по 120 человек, оставшихся проводят в запасную аудиторию в другом корпусе. При подсчёте выяснилось, что всего было 250 участников. Найдите вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории. Решение: Всего в запасную аудиторию направили 250 − 120 − 120 = 10 человек. Поэтому вероятность того, что случайно выбранный участник писал олимпиаду в запасной аудитории, равна 10: 250 = 0,04. Ответ: 0,04.

37.В классе 26 человек, среди них два близнеца - Андрей и Сергей. Класс случайным образом делят на две группы по 13 человек в каждой. Найдите вероятность того, что Андрей и Сергей окажутся в одной группе. Решение: Пусть один из близнецов находится в некоторой группе. Вместе с ним в группе окажутся 12 человек из 25 оставшихся одноклассников. Вероятность того, что второй близнец окажется среди этих 12 человек, равна 12: 25 = 0,48.

38.В фирме такси в наличии 50 легковых автомобилей; 27 из них чёрные с жёлтыми надписями на бортах, остальные - жёлтые с чёрными надписями. Найдите вероятность того, что на случайный вызов приедет машина жёлтого цвета с чёрными надписями. Решение : 23:50=0,46

39.В группе туристов 30 человек. Их вертолётом в несколько приёмов забрасывают в труднодоступный район по 6 человек за рейс. Порядок, в котором вертолёт перевозит туристов, случаен. Найдите вероятность того, что турист П. полетит первым рейсом вертолёта. Решение: На первом рейсе 6 мест, всего мест 30. Тогда вероятность того, что турист П. полетит первым рейсом вертолёта, равна:6:30=0,2

40.Вероятность того, что новый DVD-проигрыватель в течение года поступит в гарантийный ремонт, равна 0,045. В некотором городе из 1000 проданных DVD-проигрывателей в течение года в гарантийную мастерскую поступила 51 штука. На сколько отличается частота события «гарантийный ремонт» от его вероятности в этом городе? Решeние: Частота (относительная частота) события «гарантийный ремонт» равна 51: 1000 = 0,051. Она отличается от предсказанной вероятности на 0,006.

41.При изготовлении подшипников диаметром 67 мм вероятность того, что диаметр будет отличаться от заданного не больше, чем на 0,01 мм, равна 0,965. Найдите вероятность того, что случайный подшипник будет иметь диаметр меньше, чем 66,99 мм, или больше, чем 67,01 мм. Решение. По условию, диаметр подшипника будет лежать в пределах от 66,99 до 67,01 мм с вероятностью 0,965. Поэтому искомая вероятность противоположного события равна 1 − 0,965 = 0,035.

42.Вероятность того, что на тесте по биологии учащийся О. верно решит больше 11 задач, равна 0,67. Вероятность того, что О. верно решит больше 10 задач, равна 0,74. Найдите вероятность того, что О. верно решит ровно 11 задач. Решение: Рассмотрим события A = «учащийся решит 11 задач» и В = «учащийся решит больше 11 задач». Их сумма - событие A + B = «учащийся решит больше 10 задач». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,74 = P(A) + 0,67, откуда P(A) = 0,74 − 0,67 = 0,07.Ответ: 0,07.

43.Чтобы поступить в институт на специальность «Лингвистика», абитуриент должен набрать на ЕГЭ не менее 70 баллов по каждому из трёх предметов - математика, русский язык и иностранный язык. Чтобы поступить на специальность «Коммерция», нужно набрать не менее 70 баллов по каждому из трёх предметов - математика, русский язык и обществознание. Вероятность того, что абитуриент З. получит не менее 70 баллов по математике, равна 0,6, по русскому языку - 0,8, по иностранному языку - 0,7 и по обществознанию - 0,5.Найдите вероятность того, что З. сможет поступить хотя бы на одну из двух упомянутых специальностей. Решeние: Для того, чтобы поступить хоть куда-нибудь, З. нужно сдать и русский, и математику как минимум на 70 баллов, а помимо этого еще сдать иностранный язык или обществознание не менее, чем на 70 баллов. Пусть A , B , C и D - это события, в которых З. сдает соответственно математику, русский, иностранный и обществознание не менее, чем на 70 баллов. Тогда поскольку

Для вероятности поступления имеем:

44.На фабрике керамической посуды 10% произведённых тарелок имеют дефект. При контроле качества продукции выявляется 80% дефектных тарелок. Остальные тарелки поступают в продажу. Найдите вероятность того, что случайно выбранная при покупке тарелка не имеет дефектов. Ответ округлите до сотых. Решение : Пусть завод произвел тарелок. В продажу поступят все качественные тарелки и 20% невыявленных дефектных тарелок: тарелок. Поскольку качественных из них , вероятность купить качественную тарелку равна 0,9п:0,92п=0,978 Ответ: 0,978.

45.В магазине три продавца. Каждый из них занят с клиентом с вероятностью 0,3. Найдите вероятность того, что в случайный момент времени все три продавца заняты одновременно (считайте, что клиенты заходят независимо друг от друга). Решение : Вероятность произведения независимых событий равна произведению вероятностей этих событий. Поэтому вероятность того, что все три продавца заняты равна

46.По отзывам покупателей Иван Иванович оценил надёжность двух интернет-магазинов. Вероятность того, что нужный товар доставят из магазина А, равна 0,8. Вероятность того, что этот товар доставят из магазина Б, равна 0,9. Иван Иванович заказал товар сразу в обоих магазинах. Считая, что интернет-магазины работают независимо друг от друга, найдите вероятность того, что ни один магазин не доставит товар. Решение: Вероятность того, что первый магазин не доставит товар равна 1 − 0,9 = 0,1. Вероятность того, что второй магазин не доставит товар равна 1 − 0,8 = 0,2. Поскольку эти события независимы, вероятность их произведения (оба магазина не доставят товар) равна произведению вероятностей этих событий: 0,1 · 0,2 = 0,02

47.Из районного центра в деревню ежедневно ходит автобус. Вероятность того, что в понедельник в автобусе окажется меньше 20 пассажиров, равна 0,94. Вероятность того, что окажется меньше 15 пассажиров, равна 0,56. Найдите вероятность того, что число пассажиров будет от 15 до 19. Решeние: Рассмотрим события A = «в автобусе меньше 15 пассажиров» и В = «в автобусе от 15 до 19 пассажиров». Их сумма - событие A + B = «в автобусе меньше 20 пассажиров». События A и В несовместные, вероятность их суммы равна сумме вероятностей этих событий: P(A + B) = P(A) + P(B). Тогда, используя данные задачи, получаем: 0,94 = 0,56 + P(В), откуда P(В) = 0,94 − 0,56 = 0,38. Ответ: 0,38.

48.Перед началом волейбольного матча капитаны команд тянут честный жребий, чтобы определить, какая из команд начнёт игру с мячом. Команда «Статор» по очереди играет с командами «Ротор», «Мотор» и «Стартер». Найдите вероятность того, что «Статор» будет начинать только первую и последнюю игры. Решение. Требуется найти вероятность произведения трех событий: «Статор» начинает первую игру, не начинает вторую игру, начинает третью игру. Вероятность произведения независимых событий равна произведению вероятностей этих событий. Вероятность каждого из них равна 0,5, откуда находим: 0,5·0,5·0,5 = 0,125. Ответ: 0,125.

49. В Волшебной стране бывает два типа погоды: хорошая и отличная, причём погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,8 погода завтра будет такой же, как и сегодня. Сегодня 3 июля, погода в Волшебной стране хорошая. Найдите вероятность того, что 6 июля в Волшебной стране будет отличная погода. Решение. Для погоды на 4, 5 и 6 июля есть 4 варианта: ХХО, ХОО, ОХО, ООО (здесь Х - хорошая, О - отличная погода). Найдем вероятности наступления такой погоды: P(XXO) = 0,8·0,8·0,2 = 0,128; P(XOO) = 0,8·0,2·0,8 = 0,128; P(OXO) = 0,2·0,2·0,2 = 0,008; P(OOO) = 0,2·0,8·0,8 = 0,128. Указанные события несовместные, вероятность их сумы равна сумме вероятностей этих событий: P(ХХО) + P(ХОО) + P(ОХО) + P(ООО) = 0,128 + 0,128 + 0,008 + 0,128 = 0,392.

50.Всем пациентам с подозрением на гепатит делают анализ крови. Если анализ выявляет гепатит, то результат анализа называется положительным . У больных гепатитом пациентов анализ даёт положительный результат с вероятностью 0,9. Если пациент не болен гепатитом, то анализ может дать ложный положительный результат с вероятностью 0,01. Известно, что 5% пациентов, поступающих с подозрением на гепатит, действительно больны гепатитом. Найдите вероятность того, что результат анализа у пациента, поступившего в клинику с подозрением на гепатит, будет положительным. Решение . Анализ пациента может быть положительным по двум причинам: А) пациент болеет гепатитом, его анализ верен; B) пациент не болеет гепатитом, его анализ ложен. Это несовместные события, вероятность их суммы равна сумме вероятностей этих событий. Имеем: р(А)=0,9 0,05=0,045; р(В)=0,01 0,95=0,0095; р(А+В)=Р(А)+р(В)=0,045+0,0095=0,0545.

51.В кармане у Миши было четыре конфеты - «Грильяж», «Белочка», «Коровка» и «Ласточка», а так же ключи от квартиры. Вынимая ключи, Миша случайно выронил из кармана одну конфету. Найдите вероятность того, что потерялась конфета «Грильяж».

52.Механические часы с двенадцатичасовым циферблатом в какой-то момент сломались и перестали ходить. Найдите вероятность того, что часовая стрелка застыла, достигнув отметки 10, но не дойдя до отметки 1 час. Решение: 3: 12=0,25

53.Вероятность того, что батарейка бракованная, равна 0,06. Покупатель в магазине выбирает случайную упаковку, в которой две таких батарейки. Найдите вероятность того, что обе батарейки окажутся исправными. Решeние: Вероятность того, что батарейка исправна, равна 0,94. Вероятность произведения независимых событий (обе батарейки окажутся исправными) равна произведению вероятностей этих событий: 0,94·0,94 = 0,8836.Ответ: 0,8836.

54.Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система забракует неисправную батарейку, равна 0,99. Вероятность того, что система по ошибке забракует исправную батарейку, равна 0,01. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет забракована системой контроля. Решение. Ситуация, при которой батарейка будет забракована, может сложиться в результате событий: A = батарейка действительно неисправна и забракована справедливо или В = батарейка исправна, но по ошибке забракована. Это несовместные события, вероятность их суммы равна сумме вероятностей эти событий. Имеем:

55.На рисунке изображён лабиринт. Паук заползает в лабиринт в точке «Вход». Развернуться и ползти назад паук не может, поэтому на каждом разветвлении паук выбирает один из путей, по которому ещё не полз. Считая, что выбор дальнейшего пути чисто случайный, определите, с какой вероятностью паук придёт к выходу .

Решение.

На каждой из четырех отмеченных развилок паук с вероятностью 0,5 может выбрать или путь, ведущий к выходу D, или другой путь. Это независимые события, вероятность их произведения (паук дойдет до выхода D) равна произведению вероятностей этих событий. Поэтому вероятность прийти к выходу D равна (0,5) 4 = 0,0625.